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ABSTRACT

Feature selection is a prevalent data preprocessing paradigm for

various learning tasks. Due to the expensive cost of acquiring su-

pervision information, unsupervised feature selection sparks great

interests recently. However, existing unsupervised feature selection

algorithms do not have fairness considerations and suffer from a

high risk of amplifying discrimination by selecting features that

are over associated with protected attributes such as gender, race,

and ethnicity. In this paper, we make an initial investigation of

the fairness-aware unsupervised feature selection problem and de-

velop a principled framework, which leverages kernel alignment

to find a subset of high-quality features that can best preserve the

information in the original feature space while being minimally

correlated with protected attributes. Specifically, different from

the mainstream in-processing debiasing methods, our proposed

framework can be regarded as a model-agnostic debiasing strategy

that eliminates biases and discrimination before downstream learn-

ing algorithms are involved. Experimental results on real-world

datasets demonstrate that our framework achieves a good trade-off

between feature utility and promoting feature fairness.
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1 INTRODUCTION

Feature selection is an effective data preprocessing strategy for

various learning tasks [10, 15]. As it gives learning models better
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Figure 1: An illustration of the proposed fairness-aware un-

supervised feature selection framework FUFS.

readability and interpretability by maintaining the physical mean-

ings of original features, it is often preferred in high-stake applica-

tions [12, 20, 25]. Traditional feature selection algorithms can be

mainly categorized as supervised and unsupervised methods [15].

As supervision information is often costly to amass, unsupervised

methods have attracted increasing attention. However, most of the

existing algorithms do not have fairness considerations and may

exhibit discriminatory actions toward specific groups by over asso-

ciating protected attributes (e.g., gender, race) [5, 8, 22]. Though it is

intuitive to manually remove the protected attributes to avoid direct

discrimination, some non-protected attributes that are highly cor-

related with the protected attributes may still cause unintentional

discrimination problems (e.g., residential zip code may indicate the

race information because of the residential areas) [13, 29].

In this paper, we make an initial investigation of the fairness

issues of unsupervised feature selection and develop a general

model-agnostic debiasing solution. Our efforts have the potential to

alleviate unwanted biases before applying downstream learning al-

gorithms and are complementary to the mainstream in-processing

algorithmic fairness research [22]. However, the problem is non-

trivial with the following challenges. (1) Feature selection should

achieve a good trade-off between fairness and feature utility. How-

ever, without label information, we are in short of effective evalua-

tion criteria to quantify these two targets simultaneously. (2) Due

to the trade-off between utility and fairness, it is difficult to achieve

the maximums of both. It is necessary to explicitly exclude the

features which have strong correlations with protected attributes.

To tackle the challenges above, we propose a novel Fairness-

aware Unsupervised Feature Selection (FUFS) framework (as shown

in Fig. 1). To ensure that the selected features do not cause much

utility loss, we select features that can maximally preserve the orig-

inal information. Additionally, we impose fairness constraints to

enforce the protected attributes being minimally correlated with

the selected features while over associating with a small number

of unselected features. All the considerations are modeled in a

joint optimization framework. The major contributions of our work
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are as follows: (1) We address a crucial and newly emerging prob-

lem, fairness-aware unsupervised feature selection. (2) We propose

a novel FUFS framework, which selects high-quality features by

preserving original information and obeying the fairness consid-

erations. (3) We formulate two desiderata of fairness-aware unsu-

pervised feature selection (i.e., utility maximization and fairness

promotion) as an optimization problem with a principled solution.

(4) We validate the selected features by utility and fairness measure-

ments and corroborate the superiority of our proposed framework.

2 THE PROPOSED FRAMEWORK - FUFS

In this work, we assume there are 𝑛 data instances, the matrix

P ∈ R𝑝×𝑛 denotes the set of 𝑝 protected attributes for instances

(e.g., age, gender, and race), and the matrix X ∈ R𝑑×𝑛 denotes the

set of 𝑑 non-protected attributes (often we have 𝑝 ≪ 𝑑).

Problem Definition (Fairness-Aware Unsupervised Feature Selec-

tion). Given the input data X ∈ R𝑑×𝑛 and P ∈ R𝑝×𝑛 with 𝑑 non-
protected attributes and 𝑝 protected attributes, the problem aims to
select a subset of 𝑘 features among 𝑑 non-protected attributes (𝑘 ≪ 𝑑)
which can maximally preserve the information in the original feature
space while being minimally correlated with the protected attributes.

2.1 Maximizing Feature Utility

In an unsupervised scenario, we need to seek alternative evaluation

criteria to assess the importance of features. To ensure that the

selected features can well capture the information embedded in the

original feature space, we would like to maximize the correlation

between the selected features and the original ones. However, since

the original features could be high-dimensional, complex nonlinear

correlations could exist between these two feature spaces. Hence,

we measure their nonlinear correlation with kernel alignment [7].

Suppose the vector m ∈ {0, 1}𝑑 is the feature selection indicator

vector such that 1⊤m = 𝑘 , where 𝑚𝑖 = 1 if the 𝑖-th feature is

selected, otherwise𝑚𝑖 = 0. The data matrix on the selected features

can be obtained asM = diag(m)X. Then we define a kernel 𝜅 which

implicitly computes the similarity between instances in a high-

dimensional reproducing kernel Hilbert space (RKHS) [1], such

that K𝑖 𝑗 = 𝜅 (X∗𝑖 ,X∗𝑗 ) and KM
𝑖 𝑗

= 𝜅 (M∗𝑖 ,M∗𝑗 ). In practice, we can

choose polynomial kernel or RBF kernel. Denoting the centering

matrix as H = I − 1

𝑛 11
⊤
, these two kernel matrices after centering

can be denoted as K𝑐 = HKH and KM
𝑐 = HKMH, respectively. Then

we can characterize the inherent nonlinear correlation between

these two feature spaces with the centered kernel alignment:

𝜌

(
K,KM

)
= Tr(K𝑐KM

𝑐 ) = Tr(HKHHKMH) . (1)

With the observation that HH = H and Tr(AB) = Tr(BA) (where
A,B ∈ R𝑛×𝑛), we can further simplify 𝜌

(
K,KM

)
as Tr(HKHKM).

Our goal expects that the selected features in m can maximally

preserve the information embedded in the original feature space.

2.2 Promoting Feature Fairness

Maximizing Eq. (1) alone does not address the fairness considera-

tions as the selected features may be associated with the protected

attributes in P. Thus, we further impose fairness constraints to

make the selected features inM not well aligned with the protected

attributes P. To achieve this goal, suppose KP ∈ R𝑛×𝑛 is the kernel

matrix of P, we can also leverage centered kernel alignment to min-

imize the nonlinear correlation betweenM and P in kernel space:

𝜌

(
KM,KP

)
= Tr(HKMHKP). (2)

To further enforce that the sensitive information is eliminated in

the selected features, a small number of unselected features should

exhibit high correlation with the protected attributes. Hence, we

further define a decomposition indicator g ∈ {0, 1}𝑑 to indicate the

index of non-protected attributes that are highly correlated with

P, where 1⊤g = 𝑙 , and 𝑙 denotes the number of sensitive features.

Ideally, the nonzero indices of g should not overlap with those of

m. Hence, the data matrix G corresponding to g can be obtained

as G = diag(g) (I − diag(m))X. Assume the corresponding kernel

matrix is KG ∈ R𝑛×𝑛 , then the centered kernel alignment can also

be utilized to maximize the nonlinear correlation between G and P:

𝜌

(
KG,KP

)
= Tr(HKGHKP) . (3)

2.3 Objective Function of FUFS

Combining the two desiderata of fairness-aware unsupervised fea-

ture selection, we obtain a joint constrained optimization problem:

min

m,g
− Tr

(
HKHKM

)
+ 𝛼 Tr

(
HKMHKP

)
− 𝛼 Tr

(
HKGHKP

)
(4)

s.t. m, g ∈ {0, 1}𝑑 , 1⊤m = 𝑘, 1⊤g = 𝑙,

where 𝛼 is a hyperparameter that can control how strong we

would like to enforce the fairness of unsupervised feature selection.

The optimization problem in Eq. (5) is not joint convex w.r.t. m
and g simultaneously. Although we can employ alternating opti-

mization scheme for a local optimum, the whole optimization still

remains difficult since m and g are discrete. To address this issue,
we relax the discrete constraints to a real-valued vector in the range

of [0, 1]. We rewrite the optimization problem as follows:

min

m,g
L = −Tr

(
HKHKM

)
+ 𝛼 Tr

(
HKMHKP

)
− 𝛼 Tr

(
HKGHKP

)
+ 𝛽 (∥m∥1 + ∥g∥1) s.t. m, g ∈ [0, 1]𝑑 , (5)

where the ℓ1-norm is introduced for the sparsity of model pa-

rameters m and g. The hyperparameter 𝛽 is used to control the

number of selected features that are relevant and do not correlate

with protected attributes and the number of unselected features

that are highly correlated with protected attributes, respectively.

Updating m and g. We update two model parameters m and g
alternatively until the objective function converges to a local opti-

mum. The update rules are as follows:

𝑚𝑖 ← 𝑃 [𝑚𝑖 − 𝜂 𝜕L/𝜕𝑚𝑖 ], 𝑔𝑖 ← 𝑃 [𝑔𝑖 − 𝜂 𝜕L/𝜕𝑔𝑖 ], (6)

where 𝑃 [𝑥] is a box projection operator which projects 𝑥 into a

bounded range. Specifically, since we relax the constraints of𝑚𝑖

and 𝑔𝑖 in the range of [0, 1], we have 𝑃 [𝑥] = 0 if 𝑥 < 0, 𝑃 [𝑥] = 1 if

𝑥 > 1, and otherwise 𝑃 [𝑥] = 𝑥 . 𝜂 is the learning rate.

3 EXPERIMENTAL EVALUATIONS

3.1 Experimental Setup

Datasets.We perform experiments on four public available datasets.

(1) Crime
1
combines census data, law enforcement data, and crime

data of US communities. We define the percentage of population for

1
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
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African American as a protected attribute. We define two clusters

by the number of crimes and the cutoff threshold is 0.15 crimes

per 100K population. We have 2,215 communities described by 147

different attributes. (2) Adolescent
2
comes from a longitudinal

study of adolescents. The attributes are personal information of

the interviewees and their answers to a questionnaire. Bio-sex is

regarded as the protected attribute and we define two clusters by

whether their Picture Vocabulary test score is more than 65. In total,

it contains 6,504 instances and 2,793 attributes. (3) Google+
3
comes

from Google+, which contains user features and social relations

within multiple social circles. Each instance refers to a user and

attributes are obtained from personal information of users. Gender

is regarded as the protected attribute. We have two clusters defined

by the social circles that the users belong to without overlapping.

The dataset consists of 2,437 users and 1,695 features. (4) Toxicity
4

is obtained from a Toxic Comment Classification Challenge, where

each comment is considered as an instance. We apply a tokenizer to

transform text data to numerical values. The identity label ‘female’

is regarded as the protected attribute. The features are from iden-

tity labels and comment texts. There are two clusters defined by

whether the comment is regarded toxic or not. We collect a subset

of 200 instances with 4,253 features.

Evaluation Criteria. For unsupervised feature selection, cluster-

ing performance is often used as an evaluation metric [15]. Specif-

ically, we use Clustering Accuracy (ACC) and Normalized Mutual
Information (NMI), and higher values often imply better feature util-

ity. Meanwhile, we use the widely adopted metrics Balance [18] and
define a new fairness metric Proportion to quantify fairness—the

selected features are considered fairer with higher value of Balance
and lower value of Proportion. They are defined as follows:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = min

𝑖

min𝑔 |𝐶𝑖 ∩𝑋𝑔 |
|𝐶𝑖 |

, 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
∑
𝑖

max𝑔 |𝐶𝑖 ∩𝑋𝑔 |
|𝐶𝑖 |

, (7)

where 𝐶𝑖 and 𝑋𝑔 denote the 𝑖-th cluster and the 𝑔-th protected

subgroup regarding the sensitive attribute.

Competitive Methods and Implementation. We compare our

proposed framework FUFS with the following unsupervised fea-

ture selection methods that are widely used: (1) LapScore [11]; (2)

MCFS [3]; (3) UDFS [28]; (4) NDFS [19]; (5) REFS [16].

We follow the original papers to specify the hyperparameters

for the baselines. For FUFS, we set 𝛼 = 1, 𝛽 = 0.1 on Crime and

Google+ while 𝛼 = 0.01, 𝛽 = 10 on Adolescent and Toxicity. The

original distribution of the protected groups in Crime and Google+

is more unbalanced so a larger value of 𝛼 is necessary to eliminate

discrimination. Whereas Adolescent and Toxicity have more

features and a larger value of 𝛽 is necessary for sparsity. Besides,

we specify the kernel function as the RBF kernel. We first apply each

method to select the top-𝑘 ranked features and employ K-means

clustering on the selected features. Since the results of K-means

depend on initialization, we repeat K-means 50 times and report the

average results. Choosing the optimal number of selected features

is still an open problem, thus we follow conventional settings [15]

to vary the number of selected features as {10%, 15%, ..., 40%} of the
original features and report the best results.

2
https://www.thearda.com/

3
http://snap.stanford.edu/data/ego-Gplus.html

4
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/

Table 1: Results on Crime w.r.t. validity and fairness.

Method ACC NMI Balance Proportion
LapScore 0.644 (35) 0.024 (35) 0.192 (10) 1.492 (35)

NDFS 0.627 (20) 0.021 (30) 0.201 (10) 1.527 (15)

UDFS 0.728 (30) 0.150 (30) 0.107 (40) 1.456 (25)

REFS 0.774 (15) 0.082 (15) 0.208 (25) 1.552 (40)

MCFS 0.683 (25) 0.101 (20) 0.182 (20) 1.511 (25)

FUFS (ours) 0.758 (15) 0.141 (35) 0.204 (35) 1.446 (10)

Table 2: Results on Adoles. w.r.t. validity and fairness.

Method ACC NMI Balance Proportion
LapScore 0.555 (10) 0.006 (10) 0.379 (10) 1.163 (10)

NDFS 0.554 (15) 0.006 (15) 0.380 (35) 1.184 (35)

UDFS 0.556 (10) 0.007 (10) 0.359 (15) 1.184 (15)

REFS 0.544 (10) 0.004 (10) 0.380 (10) 1.184 (10)

MCFS 0.562 (10) 0.010 (10) 0.380 (15) 1.184 (15)

FUFS (ours) 0.553 (35) 0.013 (35) 0.407 (10) 1.148 (10)

Table 3: Results on Google+ w.r.t. validity and fairness.

Method ACC NMI Balance Proportion
LapScore 0.723 (40) 0.114 (15) 0.004 (40) 1.865 (10)

NDFS 0.724 (40) 0.113 (40) 0.000 (10) 1.885 (15)

UDFS 0.723 (30) 0.115 (20) 0.000 (15) 1.881 (10)

REFS 0.724 (35) 0.114 (20) 0.004 (20) 1.886 (15)

MCFS 0.719 (40) 0.109 (15) 0.228 (10) 1.412 (35)

FUFS (ours) 0.721 (10) 0.164 (15) 0.301 (10) 1.308 (10)

Table 4: Results on Toxicity w.r.t. validity and fairness.

Method ACC NMI Balance Proportion
LapScore 0.803 (30) 0.012 (30) 0.009 (40) 1.568 (10)

NDFS 0.675 (40) 0.007 (40) 0.240 (20) 1.327 (15)

UDFS 0.663 (40) 0.006 (30) 0.284 (10) 1.309 (10)

REFS 0.674 (40) 0.007 (35) 0.334 (40) 1.579 (40)

MCFS 0.650 (35) 0.006 (35) 0.285 (10) 1.391 (15)

FUFS (ours) 0.701 (40) 0.008 (25) 0.409 (15) 1.136 (15)

3.2 Performance Evaluation

The experimental results are shown in Tables 1-4. The number

in parentheses denotes the percentage of features when the best

performance is achieved. Values in red cell indicates the best result,

and blue cell indicates the second best one. We make the following

observations: (1) FUFS significantly outperforms the baseline meth-

ods in terms of Balance and Proportion with the best performance

in almost all cases and the second best performance in terms of

Balance on Crime. Existing unsupervised feature selection methods

often do not have the fairness considerations and deliver the unfair

results, while our proposed FUFS framework can obtain the most

balanced clustering results across different protected subgroups. (2)

FUFS achieves a good balance between feature utility and feature

fairness. While achieving a good performance w.r.t. different fair-

ness metrics, the clustering performance on the selected features

is not jeopardized. For example, on Crime and Toxicity, FUFS

achieves the second best performance in terms of ACC and NMI
while on Adolescent and Google+, FUFS achieves the best NMI
values and does not have obvious difference w.r.t. ACC compared

with the best baseline method. (3) The proposed FUFS framework

can achieve great performance in terms of fairness with a small

number of features. Specifically, on Adolescent and Google+,

FUFS achieves the best results in terms of Balance and Proportion
compared with the baseline methods with merely 10% of the total

number of features. On Toxicity, FUFS achieves the best results of

fairness with 15% of the total number of features.
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(a) Feature utility (b) Feature Fairness

Figure 2: Utility and fairness performance variation on Tox-

icity w.r.t. different numbers of selected features.

(a) Google+ (b) Crime

Figure 3: Clustering results w/ and w/o indicator vector g.

Table 5: Fairness results (w.r.t. Balance and Proportion) com-

parison based on the top-ranked features in m and g.

Top-𝑘 ranked features inm Top-𝑘 ranked features in g

Dataset Balance Proportion Balance Proportion
Crime 0.204 (35) 1.446 (10) 0.188 (40) 1.468 (15)

Adolescent 0.407 (10) 1.148 (10) 0.308 (40) 1.179 (30)

Google+ 0.301 (10) 1.308 (10) 0.000 (20) 1.863 (20)

Toxicity 0.409 (15) 1.136 (15) 0.063 (15) 1.629 (40)

3.3 In-Depth Exploration of FUFS

Effects of the Number of Selected Features. Choosing an opti-

mal number of features is still an open problem, thus we vary the

number of selected features as {10%, 15%, 20%, 25%, 30%, 35%, 40%}
of the total feature number and investigate how the feature utility

and fairness performance change. We only show the results on

Toxicity (Fig. 2) as we have similar observations on other datasets.

As we can see, ACC and NMI first increase and then keep stable

when the number of selected features increases. Meanwhile, the

fairness performance is the best when only 10% of features are

selected (lower values of Proportion denotes fairer results). The fair-

ness performance gradually decreases when the number of selected

features increases, since more features correlated with sensitive

features could be included in the selected feature subset.

Effects of the Decomposition Indicator Vector g. In order to

investigate the effect of the vector g, we remove it from our frame-

work and compare its performance with the original FUFS. The

results on Crime and Google+ shown in Fig. 3 imply that the in-

troduction of g improves both the utility and fairness performance.

We also compare the fairness performance based on the top-ranked

features inm and g as shown in Table 5. The number in parentheses

denotes the percentage of features when the best performance is

achieved. Obviously the clustering results based on the top-ranked

features in the vector m are fairer than those in g. It shows the

effectiveness of introducing the decomposition indicator vector g.

Parameter Study. The framework has two important hyperparam-

eters 𝛼 and 𝛽 . We first fix 𝛽 = 0.1 and vary 𝛼 among {0.001, 0.01, 0.1,
1, 10, 100, 1000}. Next, We fix 𝛼 = 1 and vary 𝛽 among {0.001, 0.01,
0.1, 1, 10, 100, 1000}. Due to space limit, we only show the results

(a) ACC (b) Balance

Figure 4: Performance variation on Google+ w.r.t. different

parameter settings. X-axis is not in a linear scale.

on Google+ in terms of ACC and Balance, as shown in Fig. 4. It

should be noted that the X-axis is plotted in a log scale, we do not

expect to see a smooth curve. The results imply that the cluster-

ing performance is relatively stable when 𝛼 = 1, 𝛽 ∈ [0.001, 0.1]
or 𝛼 ∈ [0.001, 0.1], 𝛽 = 0.1. When the parameter 𝛼 increases, the

algorithm becomes more partial to the fairness consideration with

decreasing ACC and increasing Balance. Besides, the fairness per-
formance decreases a lot if 𝛽 is specified as a very large value.

4 RELATEDWORK

Unsupervised Feature Selection. Unsupervised methods often

rely on alternative evaluation criteria based on characteristics of

data. Specifically, similarity based methods [11, 31] select features

that can best preserve the local manifold structure of data. Some

methods aim to select features that can best reconstruct [16, 30]

or maximally preserve the original information [27]. Many studies

learn the pseudo label from data by exploiting local/global dis-

criminative information and select features to predict these pseudo

labels with ℓ2,1-norm based regression [17, 19]. Recently, data re-

construction [9, 16, 30] emerged as a new criterion to evaluate

feature relevance, which evaluates the capability of features in

approximating the original data through data reconstruction.

Fairness of Unsupervised Learning Methods. Here we review

some related fairness topics in terms of clustering and representa-

tion learning. The initial work [4] defines fair variants of classical

clustering problems such as 𝑘-center and 𝑘-median and proposes

the concepts of fairlets and fairlet decomposition, which is further

extended to 𝑘-means++ algorithm by [24]. Other related works

focus on scalable fair clustering [2], fair spectral clustering [14],

and deep fair clustering [18, 26]. Another family of work aims to

learn fair representations. Fair PCA [6] is a two-step algorithm

for dimension reduction. Fair Autoencoders [21, 23] encourage in-

dependence between sensitive and latent factors of variation for

representation learning. Extended work [6] learns general-purpose

flexible fair representations regarding multiple sensitive attributes.

5 CONCLUSION

In this paper, we addressed a novel problem of fairness-aware un-

supervised feature selection and developed a principled framework

FUFS. FUFS leverages the technique of kernel alignment to se-

lect high-quality features that achieve a good balance between

improving downstream learning tasks and eliminating sensitive

information that is highly correlated with protected attributes.

These two desiderata were modeled together in a joint optimiza-

tion framework. Experimental evaluations on real-world datasets

demonstrated the superiority of the proposed FUFS framework in

terms of feature utility and feature fairness.
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