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Abstract. Networked data is commonly observed in many high-impact
domains, ranging from social networks, collaboration platforms to bio-
logical systems. In such systems, the nodes are often associated with high
dimensional features while remain connected to each other through pair-
wise interactions. Recently, various unsupervised feature selection meth-
ods have been developed to distill actionable insights from such data by
finding a subset of relevant features that are highly correlated with the
observed node connections. Although practically useful, those methods
predominantly assume that the nodes on the network are organized in
a flat structure, which is rarely the case in reality. In fact, the nodes
in most, if not all, of the networks can be organized into a hierarchical
structure. For example, in a collaboration network, researchers can be
clustered into different research areas at the coarsest level and are fur-
ther specified into different sub-areas at a finer level. Recent studies have
shown that such hierarchical structure can help advance various learning
problems including clustering and matrix completion. Motivated by the
success, in this paper, we propose a novel unsupervised feature selec-
tion framework (HNFS) on networked data. HNFS can simultaneously
learn the implicit hierarchical structure among the nodes and embed
the hierarchical structure into the feature selection process. Empirical
evaluations on various real-world datasets validate the superiority of our
proposed framework.
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1 Introduction

Networked data is ubiquitous in many application domains. Typical examples
include social networks, collaboration platforms, biological systems, and trans-
portation networks. Normally, nodes in the above-mentioned systems are not
only structurally connected, but also are associated with high-dimensional fea-
tures/attributes. For example, in the biology networks, genes are connected by
mutual interactions, while each of them contains numerous fragments which
bring in high-dimensional features. Another representative instance is the social
networks in which users are connected with each other and a diverse of user
activities (e.g., posting, retweet) brings high-dimensional features. In fact, the
high-dimensional data is often notoriously to tackle due to the curse of dimen-
sionality [14]. Meanwhile, high-dimensional data not only increases the require-
ment of memory storage and the cost of computation, but also deteriorate the
effectiveness of the algorithm due to the redundant and noisy information. To
alleviate these problems, various dimensionality reduction techniques have been
explored, among which feature selection has shown its effectiveness for various
data mining and machine learning tasks. In particular, a feature selection algo-
rithm can be seen as the combination of a search technique for selecting a subset
of high-quality features, along with an evaluation measure which scores different
subsets. The selected features would be efficient and effective to the subsequent
learning tasks as the storage and computational cost is greatly reduced while
the redundant and noisy information is significantly eliminated.
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Fig. 1. Hierarchical structure of Douban movies.
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Varying by the availability of labels, feature selection methods can be catego-
rized into supervised methods and unsupervised methods. Supervised methods
such as [8,25] usually gain better performance as label information is involved in
the selection process. However, due to the expensive cost of amassing substantial
labeled data, unsupervised feature selection has received more attention in recent
years. A family of unsupervised feature selection methods employ the pseudo
clustering labels of data to guide the selection phase, typical algorithms along
this line include Nonnegative Discriminative Feature Selection (NDFS) [16],
Robust Unsupervised Feature Selection (RUFS) [24], and Consensus Guided
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Unsupervised Feature Selection (CGUFS) [18]. Although empirically effective,
these cluster labels are still generated by all features which may lead to subopti-
mal results. Thus, some works like [15,26] chose to generate pseudo labels from
external resources like connections among different data samples and has shown
to be very effective. Nonetheless, these algorithms assume that the nodes on the
network are organized in one-layer flat structure, which is often not the case
in reality. Take the douban' movie rating network as an example, the movies
in the platform can be classified into different genres, such as comedy, tragedy,
action, etc. For each genre of the movies, we can further divide it into several
sub-categories, which can be further divided again and again in a hierarchical
manner as illustrated in Fig. 1. The data hierarchical structure has been proved
to be effective in many other tasks such as representation learning [27] and
recommendation [29]. Thus, it motivates us to investigate whether the success
can be shifted to guide the selection of more relevant features when the label
information is not available.

To address the aforementioned issues, in this paper, we propose a novel unsu-
pervised feature selection algorithm, i.e., HNFS to exploit the implicit hierar-
chical structure embedded on the network. Specifically, we propose to learn the
implicit hierarchical structure from the network structure and measure its cor-
relation with the node attribute information for unsupervised feature selection.
The major contributions of this paper are as follow:

— Providing a principled way to learn implicit hierarchical structures of network
data.

— Proposing a novel unsupervised feature selection framework which embeds
the hierarchical structure learning into feature selection.

— Providing an effective alternating algorithm for the proposed algorithm.

— Demonstrating the effectiveness of the proposed framework on four commonly
used real-world datasets.

2 The Proposed Framework

We first summarize the notations used throughout the paper. For a given matrix
A, A(i,j) denotes the (4,7)-th entry of A. Tr(A) denotes the trace of A if A
is a square matrix. (A,B) equals Tr(A”B), which means the standard inner
product between two matrices. I is the identity matrix and 1 is a vector whose
elements are all 1. For any matrix A € R"*? its Frobenius norm and loq1-

norm are respectively defined as [|A|l = \/2?21 Z?Zl A(i,)? and Ay, =
d .
Z:‘L:1 Ej:l A(%J)2~

2.1 Unsupervised Feature Selection

Sparse learning has been regarded as a potent tool for feature selection [5,16].
In particular, one popular method is to embed feature selection into a clustering

! https://movie.douban.com/.
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algorithm by selecting latent features with sparse learning [28]. Following this
approach, we choose to embed feature selection into a low-rank matrix construc-
tion algorithm and apply f2 ;-norm on the latent representation of the original
data. Let X € R™*? be the feature matrix which collects the feature vector of
all the n nodes. Our basic model decomposes the feature matrix X into two
matrices, i.e., V. € R** and W € R%>* and perform ly.1-norm on W as
follows:

wmin )x VWTH +a Wy, stVIV=LV >0, (1)

where V is the clustering indicator matrix, W is the latent feature matrix, and
k is the number of predefined clusters. In supervised feature selection, we can
regard the label information as the clustering indicator V to steer the selection
process. But when it comes to the unsupervised situation, there is no such ground
truth information, thus we choose to generate the pseudo labels by resorting to
side information such as the structure information among data instances.

nxr = Xk
‘UIERJr1 ‘UzeRﬁ ‘

71 X7
‘UZERj 2
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Uy RPN U, €RT
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Fig. 2. Hierarchical structure of nodes via deeply factorizing the latent feature matrix.

2.2 Latent Representation of Network Structure

Given a network GG with adjacency matrix A, we can model the latent represen-
tations of its nodes with nonnegative matrix factorization [17] as

2
minHA—UVTH L s U>0,V>0, (2)
u,v F

where U € RiXk and 'V € R’}er. Optimizing Eq. (2) can be viewed as a clustering
process over the network. Specifically, each column of U represents the potential
definition of a community, and each row of V denotes the membership of a node
to all kK communities. Naturally, U(4,1)V (I, j) can be regarded as the contribution
of the I-th community to the edge A(i,7). Thus, A(i,j) = Ez UG DV, g)
should be the result of the relationship between node ¢ and j. Moreover, the
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membership of nodes obtained in V can act as the role of pseudo labels for
unsupervised feature selection.

Through Eq. (2), we learn a one-layer representation of clustering (i.e., com-
munities in network) U and a community membership matrix V). However, it
assumes that the nodes on the network are organized in a one-layer flat struc-
ture, which omits the diversified and complicated organizational patterns in
real-world networks as described in [34]. To learn more accurate representation
of the communities on the network, we decide to further factorize the one-layer
latent representation U to capture the implicit hierarchical structure among
nodes embedded in the network. Specifically, we factorize the adjacency matrix
A into p + 1 nonnegative factor matrices, as follows:

A ~U,U,..U, VT, (3)

where V € Rim, U, ¢ R:f‘lxm(l <i<pl,andn=rg>r > ... >7Tp_1 >
rp = k.

Additionally, the widely used Frobenius norm for reconstruction error mea-
suring is often very sensitive to the anomaly nodes in the network, while the
{3 1-norm error is often more preferred as it can enhance the robustness of the
model. Hence, to collectively capture the hierarchical structures of the communi-
ties on the networks and ensure the robustness of the model, we propose to learn
the latent representations of the nodes and the community assignment through
the following optimization problem:

min HA ~ULU, ...UpVTH
U,V 2,1 (4)
st. V>0,U;>0,i€1,2,....p,

where the original flat-structured community matrix U is firstly decomposed
into two nonnegative matrices Uy € RiX” and Uy € REX’“ . Following the
same procedure, the latent feature matrix U can be further factorized into p
nonnegative matrices as illustrated in Fig. 2. This formulation will lead to more
accurate community membership results, i.e., a better community assignment
matrix V.

2.3 The Proposed Framework — HNFS

With a hierarchy of p layers latent representations of the network, we combine
Eq. (1) and Eq.(4) into a unified framework—HNFS by solving the following
optimization problem:

2
: _ T _ T
o [|A =00 UV e X v W,

st. VIV=I,V>0,U;>0,ic1,2,..,p,

()

where « controls the balance between the network structure and feature infor-
mation for community assignment learning; while 3 is a parameter to decide the
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sparsity of the model. With W fixed, the latent representation V is associated
with both the network structure (i.e., A) and the features (i.e., X). When fixing
the latent representations V, the nodes membership learned in 'V can be viewed
as the pseudo labels to guide the feature selection. As a result, the feature selec-
tion part and latent representation learning part could compliment each other
and leads to a better model.

3 Optimization Algorithm

3.1 Solution

The objective function is not jointly convex w.r.t. all the variables, but it is con-
vex w.r.t. each variable individually. Therefore, we can optimize the variables
in an alternative update manner. Following [13], we propose to solve the prob-
lem with Alternating Direction Method of Multiplier (ADMM) [11]. First, we
introduce two auxiliary variables Z and E, and rewrite the optimization problem
as:

2
1 T
Ui,\Iffl\lnrfl,E,z”EHz’l +aHX vw HF+6”W||2,1

st. Z=UUy. U, E=A-ZV' VI'V=1 (6)
Z>0,V>0,U;>0,i€1,2,..,p.
The problem in Eq. (6) can be formulated as the following ADMM problem:
2
. _ T
o min Bl + o[ X = VW 3w,
+(Y1,Z - U,U,..U,) + (Yo, A - ZVT - E)

2
+ 22— U0, G, [+ HA AV EHF)
stVIV=1,Z>0V>0U;>0,ie1,2 ..,p,

where Y1,Ys are two Lagrangian multipliers, and p is a scalar to control the
penalty for the violation of equality constraints (i.e., Z =U,U,...U, and E =
A—7ZVT).

Update E. Fixing all other variables except E, the objective function can be
reformulated as:

2

1 1
in-||E—-—(A-2ZVT + Y
m}éHQH ( +,U 2)

1
+—El,, - (8)
[ | 2,1

The equation has a closed-form solution by using the following Lemma [19].

Lemma 1. Let Q = [qy;4dy; ---;4,,] be a given matrix and A be a positive
scalar. If the optimal solution of

1 2
H‘lhllni ||W*QHF+/\||W||2,1 9)
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is W™, then the ¢th row of W* is

A .
wr = [ (= rap)as i/ llaill > A »
0 otherwise.

Suppose Q = A —ZVT + iYQ, E can be updated as follow by using Lemma 1:

(11)

o = { U= e if lall >
0 otherwise.

Update V. We follow the same strategy in [23] to update V. Note that the
constraints of V are the same in [23] and ours. Removing irrelevant terms to V
from Eq. (7), the optimization problem can be rewritten as:

1
min ¥ HA —ZVT _E+ -Y,
vTv=I 2 1

After expanding the objective function and dropping terms that are independent
of V, we get

2 2
+aHX7VWTH . (12)
F F

.M 2
EIVIE - N, v 13
Juin S IVIE - w(N, V), (13)

where N = (AT — ET + iYg)Z — 2FO‘XVV. The above equation can be further
simplified to a more compact form as min 'V — NH?, According to [13], V
VIV=I

can be updated by the following equation in which P and Q are left and right
singular values of the SVD decomposition of N:

VvV =pPQ’. (14)

Update W. The update rule for W is similar as E. When other variables except
W are fixed and terms that are irrelevant to W are removed, the optimization
problem for W can be rewritten as:

2
inal|/X - VWTH Wi, . 1
mina | L+ BIW]y, (15)
Using the fact that VZ'V =1, it can be reformulated as
1 r||? | B
min 5 HW—VX HF+ S Wl (16)
Again, the above equation has a closed-form solution according to Lemma 1. Let

K = VX7, then
w; = { O zatiep i i kil > o (17)
0 otherwise.
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Algorithm 1. Algorithm 1 The Proposed HNFS algorithm

Input: The data matrix X and the adjacency matrix A
The layer size of each layer r;
The regularization parameter «, 3
The number of selected features m

Output: The most m relevant features.

1: Initialize p = 1073, p = 1.1, U; = 0, V = 0 ( or initialized using K-means)

2: while not convergence do

3: Calculate Q = A — ZV7T + LY

Update E by Eq. (11)

Calculate K = VX7

Update W by Eq. (17)

Calculate T = £[(A — E + iYg)V +U+ in]

Update Z by Eq. (19)

9:  Calculate S; = (HI H,) 'HY (z — X)BY (B,B]) "

10: Update U; by Eq. (24)

11:  Calculate N = (AT —E" + 1Y3)Z — 22XW

12: Update V by Eq. (14)

13: Update Y1,Ys and p by Eq. (25), Eq. (26) and Eq. (27)

14: end while

15: Sort each feature of X according to ||w;||, in descending order and select the top-m
features

1

Update Z. By removing other irrelevant parts to Z, the objective function can
be rewritten as:

2

1 |1 1
min 2 |A-zZVT —E+-Y,| +L2 |00, U, -2+ Y, (18)
Z>0 2 I r 2 o

F

By setting the derivative of Eq. (18) w.r.t. Z to zero, we get 2Z = (A — E +
Y2)V+ U+ 1Y Let T = 3[(A-E+ Y2)V+ U+ Y] Then Z can be
updated as:

Z,‘J = max(Tm', O) (19)

Update U,. By fixing all the variables except U;, the objective function in
Eq. (7) is reduced to:

2
1
min & HHiUiBi ~Z+ =Yy , (20)
U;>0 2 W F
where H; and B;, 1 < i < p, are defined as:
U0 Uy if i #1
HZ_{I if i=1, (21)

and ;i
o Ui+1Ui+2 Up 1 ) p
BZ_{I if 1=p. (22)
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By setting the derivative of Eq. (20) w.r.t. U; to zero, we get
Y,

H;H,U,BB] - H](Z - —)B] =0, (23)
where Hsz is a positive semi-definite matrix, the same is true of BiB;fF. Let

S = (HiTHi)_lH?(Z - %)BiT(BiBiT)_l7 then U, has a closed-form solution:

Update Y;,Y> and p. After updating the variables, the ADMM parameters
should be updated. According to [4], they can be updated as follows:

Y1 :Y1+M(Z—U1U2...Up), (25)
Y=Y+ uA—-ZV' —E), (26)
1= pi. (27)

Here, p > 1 is a parameter to control the convergence speed. The larger p is,
the fewer iterations we require to get the convergence, while the precision of the
final objective function value may be sacrificed. In Algorithm 1, we summarize
the procedures for optimizing Eq. (6).

Table 1. Detailed information of the datasets.

Wiki | BlogCatalog | Flickr | DBLP
#Users 2,405 |5,196 7,575 | 18,448
#Features | 4,937 | 8,189 12,047 |2,476
#Links 17,981 | 171,743 239,738 | 45,611
#Classes | 19 6 9 4

4 Experiments

4.1 Experimental Settings

Datasets. The experiments are conducted on four commonly used real-world
networks datasets, including Wiki?, BlogCatalog®, Flickr (See footnote 3) and
DBLP*. The detailed statistics of these datasets are listed in Table 1.

2 https://github.com/thunlp/OpenNE/tree/master/data/wiki.
3 http://dmml.asu.edu/users/xufei/datasets.html.
4 https://www.aminer.cn/citation.
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— Wiki: Wiki is a document network which is composed of hyperlinks between
wikipedia documents. Each document is displayed by a high-dimensional vec-
tor which indicates the word frequency count of itself. These documents are
classified into dozens of predefined classes.

— BlogCatalog: BlogCatalog is a social blog directory in which users can reg-
ister their blogs under different predefined categories [31]. Names, ids, blogs,
the associated tags and blog categories form the content information while
the class label is selected from a predefined list of categories, indicating the
interests of each user.

— Flickr: Flickr is a content sharing platforms, with a focus on photos, where
users can share their contents, upload tags and subscribe to different interest
groups [32]. Besides, users interact with others forming link information while
groups that users joined can be treated as class labels.

— DBLP: DBLP is a part of the DBLP bibliographic network dataset. It con-
tains papers from four research areas: Database, Data Mining, Artificial Intel-
ligence and Computer Vision. Each paper’s binary feature vectors indicate the
presence/absence of the corresponding word in its title.

Baseline Methods. We compare our proposed framework HNFS with the
following seven unsupervised feature selection algorithms, which can be divided
into two groups. The first five algorithms only consider the attribute information
while the latter two take both attribute information and structure information
into consideration. Following are the comparing methods used in our experiment.

— LapScore: Laplacian Score is a filter method for feature selection which is
independent to any learning algorithm [2]. The importance of a feature is
evaluated by its power of locality preserving, or, Laplacian Score [12].

— RUFS: RUFS is a robust unsupervised feature selection approach where
robust label learning and robust feature learning are simultaneously per-
formed via orthogonal nonnegative matrix factorization and joint ¢5 ;-norm
minimization [24].

— UDFS: UDFS incorporates discriminative analysis and ¢ ;-norm minimiza-
tion into a joint framework for unsupervised feature selection under the
assumption that the class label of input data can be predicted by a linear
classifier. [33].

— GreedyFS: GreedyFS is an effective filter method for unsupervised feature
selection which first defines a novel criterion that measures the reconstruction
error of the selected data and then selects features in a greedy manner based
on the proposed criterion [10].

— MCFS: By using spectral regression [6] with ¢5 ;-norm regularization, MCFS
suggests a principled way to measure the correlations between different fea-
tures without label information. Thus, MCFS can well handle the data with
multiple cluster structure [5].

— NetFS: NetFS is an unsupervised feature selection framework for networked
data, which embeds the latent representation learning into feature selec-
tion [15].
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— HNFS-flat: HNFS-flat is a variant of our proposed framework which only
considers the flat structure of networks by setting p = 1 in our model.

Metrics and Settings. Following the standard ways to assess unsupervised fea-
ture selection, we evaluate different feature selection algorithms by evaluating
the clustering performance with the selected features. Two commonly adopted
clustering performance metrics [14] are used: (1) normalized mutual informa-
tion (NMI) and (2) accuracy (ACC). The parameter settings of the baseline
methods all follow the suggestions by the original papers [5,12,33]. For our pro-
posed method, we tune the model parameters by a “grid-search” strategy from
{0.001,0.01,0.1,1,10,100,1000} and the best clustering results are reported. We
implement HNFS with the number of layers p = 2. Although different layers
p € {2,3,4,5,6} are tried, the performance improvement is not significant while
more running time is required. Meanwhile, we specifiy the size of layer r; = 256
and we will explain the reason later. In the experiments, each feature selection
algorithm is first used to select a certain number of features, then we use K-means
to cluster nodes into different clusters based on the selected features. Since K-
means may converge to local optima, we repeat the experiments 20 times and
report the average results.

-=-HNFS -=-HNFS-flat - NetFS -~ MCFS -+~ GreedyFS = UDFS -~ RUFS -+ LapScore
0.3 g 50
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Fig. 3. Clustering results with different feature selection algorithms on Blogcatalog
dataset.

4.2 Quality of Selected Features

In this subsection, we compare the quality of the selected features by our model
and other baseline methods on all the datasets. The number of selected fea-
tures varies from {400, 800, 1200, 1400, 1600, 1800, 2000}. The results are shown
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Fig. 4. Clustering results with different feature selection algorithms on Flickr dataset.
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Fig. 5. Clustering results with different feature selection algorithms on Wiki dataset.

in Fig. 3, 4, 5 and 6. The higher the ACC and NMI values are, the better the
feature selection performance is. We have the following observations based on
the experimental results:

— The methods that consider both attribute information and structure infor-
mation obtain much better results than the ones that only exploit feature
information especially in Blogcatalog and Flickr. It is because that these two
datasets contain abundant structure information while Wiki and DBLP have
sparse adjacency matrix. Despite of this, methods that consider structure
information can still benefit from it in latter two datasets in most situations.
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Fig. 6. Clustering results with different feature selection algorithms on DBLP dataset.

It implies that when the label information is not explicitly given, network
structure indeed can help us select more relevant features.

— HNFS and NetFS consider the network structure differently. NetFS regard
it as a flat-structure while real-world networks usually exhibit hierarchical
structures which should be fully considered. The results between our model
and NetFS prove that implicit hierarchical structures of networks can improve
the performance of feature selection. The observations are further confirmed
by the improvement of HNF'S over its flat-structure variant HNFS-flat.

— In Wiki and DBLP datasets, HNF'S performs well with only a few hundred of
features. BlogCatalog and Flickr have more features than the first two, but
HNFS still obtains good clustering performance with only around 1/10 and
1/20 of total features, respectively.

N e 1000
0001 ' 8

The effect of parameter «. The effect of parameter (.

Fig. 7. Parameter analysis on Wiki.
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4.3 Parameter Analysis

Our model has two regularization parameters o and (. « controls the bal-
ance between the network structure and feature information for feature selec-
tion, while § determines the sparsity of the model. To discuss the influences
of these two parameters, we choose to fix one parameter each time and change
the other one to see how the clustering results change. Due to space limit, we
only report the results on Wiki in Fig. 7. We first make the parameter 5 equal
to 10 and vary the parameter « as {0.001,0.01,0.1,1,10,100,1000}. We can
see from Fig.7 that when « is around 10 we can get a relatively better clus-
tering performance. Then we make a equal to 1 and vary the parameter § as
{0.001,0.01,0.1, 1,10, 100, 1000}. As shown in Fig. 7, with the increase of (3, the
clustering performance first increases then becomes stable. The reason is that a
small o will reduce the feature sparsity of the model, which is not of great benefit
to feature selection. Besides, the experimental results show that the clustering
performance is more sensitive to the number of selected features compared with
«a and (. However, picking the proper number of features is still an open problem
that requires deep investigation.

5 Related Work

5.1 Traditional Feature Selection

Depending on the existence of the label information, feature selection algorithms
can be broadly divided into supervised and unsupervised methods. Supervised
feature selection algorithms assess feature relevance via its correlation with the
class labels [22,35]. According to the adopted strategies, we can further divide
supervised feature selection into filter methods and wrapper methods [14]. Filter
methods pay attention to feature selection part which means they are indepen-
dent of any learning algorithms. On the contrary, wrapper methods have a close
relationship with the learning algorithm. They use the learning performance to
access the quality of selected features iteratively, which is often computation-
ally expensive. Unsupervised feature selection algorithms, on the other hand,
have attracted a surge of research attention due to its effectiveness in addressing
unlabeled data [1,3,33]. Without label information to access the importance of
features, unsupervised feature selection methods [7,30] need some alternative
criteria to decide which features to select, such as data reconstruction error [9],
local discriminative information [16,33], and data similarity [12,36]. To effec-
tively select a subset of features, sparsity regularizations like {;-norm and /3 ;-
norm [5,15,16,33] have been extensively used in unsupervised feature selection.

5.2 Unsupervised Feature Selection with Pseudo Labels

Furthermore, to compensate the shortage of labels, many unsupervised feature
selection methods tend to explore some other information among data instances
to guide the feature selection procedure, namely pseudo labels. The result of
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clustering has been commonly used as pseudo labels in many unsupervised fea-
ture selection works. For example, NDFS [16] combines the result of spectral
clustering with the traditional feature selection and obtain better performance.
EUFS (28] and RUFS [24] utilize the result of spectral clustering in the same
way and only change the part of feature selection to make it more robust. Since
the spectral clustering can help to select feature, so do other clustering meth-
ods. CGUFS [18] proposes to learn a consensus clustering results from multi-
tudinous clustering algorithms, which leads to better clustering accuracy with
high robustness. But, the clustering result obtained by high-dimensional feature
matrix may contain numerous noise. Thus, some other methods attempt to uti-
lize structure information as the pseudo labels, namely the adjacency matrix.
LUFS [26] first extract social dimensions and then utilize them for selecting dis-
criminative features on the attributed networks while NetFS [15] embeds the
latent representation obtained from structure information into feature selection.
However, these works are substantially different from our proposed framework
HNFS as they omit the hierarchical structure among data instances. The hierar-
chical information has demonstrated its importance in supervised feature selec-
tion [20,21], which facilitates the investigation of HNFS in this paper. Besides,
HNFS provides an iterative way to learn the implicit hierarchical structures
and feature importance measures simultaneously and the feature selection part
becomes more robust compared with other unsupervised feature selection algo-
rithms.

6 Conclusion and Future Work

In this paper, we propose an unsupervised feature selection framework HNFS
for networked data. Specifically, the proposed method can effectively capture
the implicit hierarchical structure of the network while measuring its correla-
tion with node attributes for feature selection. Methodologically, we perform
Alternating Direction Method of Multiplier (ADMM) to optimize the objective
function. Extensive experimental results on four real-world network datasets
have validated the effectiveness of our model.

There are several directions worth further investigation. First, it would be
meaningful to study the effectiveness of other hierarchical network representation
methods in contrast to the nonnegative matrix factorization method used in this
work. Second, real-world networks are evolving over time, which means both the
network structure and the features are changing timely. Thus how to generalize
the proposed method in a dynamic setting would be another interesting research
direction.
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