Knowledge and Information Systems (2021) 63:105-124
https://doi.org/10.1007/s10115-020-01511-x

REGULAR PAPER

®

Check for
updates

Incremental one-class collaborative filtering with co-evolving
side networks

Chen Chen' . Yinglong Xia2 - Hui Zang' - Jundong Li3 - Huan Liu® .
Hanghang Tong®

Received: 12 March 2019 / Revised: 26 August 2020 / Accepted: 30 August 2020 /
Published online: 17 September 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract

One-class collaborative filtering (OCCF) is a fundamental research problem in a myriad of
applications where the preferences of users can only be implicitly inferred from their one-class
feedback (e.g., click an ad or purchase a product). The main challenges of OCCEF lie in the
sparsity of user feedback and the ambiguity of unobserved preferences. To effectively address
the above two challenges, side networks from users and items are extensively exploited by
state-of-the-art methods, which are predominantly focused on static settings. However, as
real-world recommender systems evolve over time (where both the user—item ratings and
user—user/item—item side networks will change), it is necessary to update OCCF results (e.g.,
the latent features of users and items) accordingly. The main obstacle for OCCF online
update with co-evolving side networks lies in the fact that the coupled system is highly
sensitive to local changes, which may cause massive perturbation on the latent features
of a large number of users and items. In this paper, we propose a novel incremental one-
class collaborative filtering (OCCF) method that can cope with co-evolving side networks
efficiently. In particular, we model the evolution of latent features as a linear transformation
process, which enables fast update of the latent features on the fly. Empirical experiments
demonstrate that our method can provide high-quality recommendation results on real-world
datasets.

Keywords Incremental algorithms - One-class collaborative filtering - Evolving networks

1 Introduction

The past decade has witnessed the prosperity of recommender systems in various applica-
tions, ranging from e-commerce platforms to online service providers. Among the numerous
recommendation algorithms in the literature, collaborative filtering-based methods are widely
adopted in many applications due to its superior effectiveness. Traditional collaborative filter-
ing algorithms are typically designed to provide recommendations based on users’ explicit,
multi-scale feedback (e.g., rating 1-5). However, in many real applications, the preferences

The work was done while the first three authors were working at Futurewei Technologies, Inc.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-020-01511-x&domain=pdf

106 C.Chenetal.

1
F F=FxTp
M u ' M=M+AM u
u, : u,
uy [' ey ' ey uy
u, 1 u,
Us : us
1
|
User Preference | User Preference _
R G R=R+AR G=GXTg
iy i
Ao i i s
| Ay : 1]
is i.
Item Network i i Item Network i
N ' N=N+ AN
t t+1 time

Fig.1 An illustration of online one-class recommendation problem with side networks. Solid lines represent
the links in the original system, dashed lines represent the newly emerged links (best viewed in color)

might only be inferred from users’ implicit, one-class feedback (e.g., actions or inactions).
For example, it is reasonable to infer that a user likes a song if s/he listened to it from the
beginning to the end; otherwise, s’he may not be into the song. Such applications are generally
formulated as one-class collaborative filtering (OCCF) problems [24].

The key challenges for OCCF lie in the sparsity of positive feedback (preferences) and the
ambiguity of missing preferences. A promising way to address those issues is to exploit side
information from the social networks of users and/or similarity networks of items as in [23]
and [42]. The key idea behind those methods is that socially connected users tend to share
similar tastes on items, while similar items are more likely to impose similar impact to users.

In real applications, the user preferences in the systems often evolve over time, which
would inevitably affect the preference inference results in the original static system. For
example, in the e-commerce platform shown in Fig. 1, new friendship relations (black dashed
lines) and user preferences (red dashed lines) are emerging over time. Meanwhile, as new
products are being released to the market, similarity links between newly released products
and existing products would appear in the system as well. In such a coupled system, the
emergence of new connections and preferences may cause a ripple effect to the platform,
hence affect the preferences of a large proportion of users. The dynamics of the system
have spurred the research on collaborative filtering in different ways. One line of research
is to treat the system dynamics as the temporal data input, and the goal is to learn a unified
user model to predict the potential preference for the current step [15]. In such temporal
recommender systems, the learnt user model would need to be re-calibrated when new links
are established over the time, making it inefficient to maintain on the fly. Another line of
research is to treat the emerging links at each step as the incremental changes to the original
system snapshot. Thus, the representation for users and items can be efficiently updated with
some evolutionary algorithms like incremental matrix factorization [38]. However, most of
the evolutionary algorithms only exploit the newly observed preferences between users and
items, with few attempts to incorporate social network between users and similarity network
between items into the model.

In this paper, we propose an efficient algorithm to incrementally update one-class col-
laborative filtering results with co-evolving side networks. To efficiently accommodate the
changes in the system, we propose to model the evolution of latent features based on the
following observations: the system often evolves smoothly between two consecutive times-

@ Springer

Incremental one-class collaborative filtering... 107

tamps such that a large number of observed preferences and network links remain unchanged.
Thus, we can view the new latent features as a subtle linear transformation from the previous
features. This would in turn allows us to incrementally solve the OCCF problem in a timely
manner without re-solving it from scratch.

The main contributions of the paper can be summarized as follows:

— Problem Formulation. We formally define the problem of incremental OCCF with co-
evolving side networks.

— Algorithms and Analysis. We propose an incremental OCCF algorithm (ENCORE) that
can efficiently accommodate system dynamics and analyze its optimality and complexity.

— Evaluations. We empirically evaluate the proposed method on real-world datasets to
verify its effectiveness and efficiency.

The rest of the paper is organized as follows. In Sect. 2, we give the formal definition
of the problem. Section 3 presents the proposed method and analysis. Section 4 shows the
evaluation results on real datasets. Section 5 reviews the related work, and Sect. 6 concludes
the paper.

2 Problem definition and preliminaries
2.1 Problem definition

In this section, we first give a formal definition of the studied problem of incremental OCCF
with co-evolving side networks. After that, we provide the preliminaries to facilitate the
understanding of the proposed algorithm.

The main symbols used in the paper are summarized in Table 1. We use bold uppercase
for matrices (e.g., A) and AA for the perturbation matrix of A. " sign denotes the notations
after adding the perturbations into the system (i.e., A = A + AA).’ sign denotes the matrix
transpose.

With the above notations, we first define the static OCCF problem with side networks as
follows.

Definition 1 The problem of static OCCF problem with side networks.

Given: I' =< M, N, R > where M is an n,, x n, social network between users; N is an
n; X n; similarity network between items; and R is an n, x n; user preference matrix, in
which R(i, j) = 1 if user i shows preference on item j, otherwise R(7, j) = 0.

Output: The inferred preference between user u and item i in the original system I' =<
M,N,R >.

Based on the above definition, we give the formal definition of incremental OCCF problem
with co-evolving side networks.

Problem 1 The problem of incremental OCCF with co-evolving side networks.

Given: (1) The original system I' =< M, N, R >; (2) the perturbation of the system A" =<
AM, AN, AR >; (3) the n, x r latent feature matrix F for users in the original system I';
and (4) the n; x r latent feature matrix G for items in the original system I'.

Output: The inferred preference between user u and item i in the updated system I =<
M,N,R >.

@ Springer

108 C.Chenetal.

Table 1 Main symbols

Symbol Definition and Description

A, B Adjacency matrices

AA Perturbation matrix of A

A Updated matrix of A

A, j) The element at ith row jth column in A

A/ Transpose of matrix A

M The adjacency matrix of user network

N The adjacency matrix of item network

Dy, Dy The diagonal degree matrices for M and N

R The preference matrix for users w.r.t. items

r The recommendation problem with side
Networks I' =< M, N, R >

w The weight matrix for R

F The latent feature matrix for users

G The latent feature matrix for items

F(u,:) The latent feature for use u

G(,:) The latent feature for item i

Ny, nj Number of users and items

My, m; Number of edges in M and N

my Number of observed links in R

r The feature dimension for F and G

t The number of iterations

2.2 Preliminaries
Under static settings, OCCF problem with side networks can be solved with the following
optimization problem [42]
in |[Wo [R-FG)|3 F|% + G|}
LN [Wo(e +BUFIE +11GlF)
Matching Observed Ratings Regularization
+ a(tr(F'(Dy — M)F) + tr(G' Dy — N)G)) (1)

Node Homophily

where © is the Hadamard product with [A © Bl(i, j) = AQ, j)BG, j), |Alr =

/3 Zl;:l |laj;|?> is the Frobenius norm of matrix A, and tr(A) = >/, aj; is the

trace of matrix A. In the above objective function, R is the user preference matrix; F
and G are the non-negative' latent feature matrices for users and items, respectively; Dy
and Dy are the diagonal degree matrices for user network M and item network N (i.e.,
Dy (u,u) = Z“ A(u,k),Dy(i,i) = Zi A(i, k)), respectively. W is an n,, x n; weighting
matrix, in which W(i, j) = 1 if R(i, j) = 1 (i.e., positive preference observed between
user i and item j), otherwise W(i, j) € [0, 1] if R(Z, j) = O (i.e., no preference observed
between user i and item j). It is worth mentioning that the weight for unobserved links is

! The rationale behind the non-negative constraint is that non-negative matrix factorization is more capable of a
representation for parts of data [16], making the factorization results more expressive for data reconstruction [8].

@ Springer

Incremental one-class collaborative filtering... 109

used to mitigate its uncertainty between potential positive preferences and negative exam-
ples. Consequently, different weighting strategies can be applied in different scenarios. In
this paper, we follow [42] to set the weight of all unobserved entries to a global value w for
the ease of computation.

In Eq. (1), the first term is used to match the preferences in matrix R; the second term is to
prevent overfitting of the model; and the third term is used to exploit node homophily in side
networks. The intuition behind this term is that similar users would hold similar preferences
to items (i.e., small [|[F(u,:) — F(v, :)||%).2 Correspondingly, similar items would possess
similar attractiveness to users (i.e., small ||G(i,:) — G(J, :)||§). The entire optimization
problem in Eq. (1) can be solved by non-negative matrix factorization techniques [17] with
time complexity O (((m, + m; + m,)r + (n, + n))rH)r) (t denotes the number of iterations
for the optimization algorithm). The inferred preference between user # and item i can be
estimated by F(u, :)G(i, :)’, where F and G are the local optimal solutions of Eq. (1).

3 Proposed algorithm and analysis

In this section, we first introduce the proposed algorithm for incremental OCCF with co-
evolving side networks. Then we analyze its effectiveness and efficiency.

3.1 The proposed algorithm

Given a static recommendation inputI' =< M, N, R >, we can find its latent feature matrices
F and G by solving Eq. (1) as shown in the previous section. However, in real applications,
networks are evolving over time with perturbation AI' =< AM, AN, AR > from the
previous timestamp. Consequently, the latent feature matrices should be updated accordingly
to provide a more accurate preference estimation. Additionally, as the whole systems are often
changing smoothly [19]; hence, we can assume that the updated user features F and item
features G still reside in the same feature space with F and G, but are subtly transformed by
the system perturbations. In this way, the updated feature matrices F and G can be viewed
as a linear transformation from F and G as shown in the example in Fig. 1 (i.e. F = FTf,
G = GTg). Therefore, Problem 1 is equivalent to finding the transformation matrices T
and T for the new timestamp. Hence, the new objective function under perturbation A"
can be written as

min [[Wo (R —FTFT;G)|%
Tr.Tg
+a(UT,F (D, — M)FT)
+au(TgG' Dy —N)GT6) + BUFTF |7 + GTa7)

st. FTp,GTg >0 2)
Notice that the above objective function imposes a linear constraint on Ty and T¢ in
FTr, GTg > 0, which would inevitably increase the computational complexity. We propose
to simplify the constraint by replacing it with a non-negative constraint on Tr and Tg. As

F and G are non-negative in the first place, their non-negative linear combinations FT r and
GTg are guaranteed to be non-negative as well. Therefore, we can rewrite the above objective

2 ||al|7 is the L2-norm of vector a.

@ Springer

110 C.Chenetal.

function as follows

min WO (R — FTFT,;G)||>

Tr,Tg>0
+ atr(TRF' (D, — M)FTF)
+atr(T5G' Dy — N)GTg) + BUTFI% + ITG1I%))

As the objective function in Eq. (3) is not jointly convex w.r.t. Tr and T due to the term
FTrT,G’, it is hard to find the global optimal solution for the problem. Instead, we seek to
obtain its local optimal solution by alternatively updating Tr and T while fixing the other
one.

When Tg is fixed, the objective function w.r.t. T is reduced to

, =IWo R -FTT;G)|%
+ atr(TpF Dy, — MFTF) + Bl Tr %)

Then the derivative of J, w.r.t. T is

19 .
2 _F(WoWo (FTFT,;G))GTg
2 9Tr

—F(WoWOoRGT; + oF Dy — MFT; + Tr Q)

Therefore, we can update Tr with

Tpa,j):TF(i,j),/%;j; ©6)

where
X; =F (WO WOR)GTg + «F MFT 7
Yr =F (WO WO FTrT;G')GTg
+ aF D FTr + BTF ®)

Note that the brute force way to update Y r requires to calculate a large dense matrix W ©
W O (FTrT;G) (ie. W© W O (FG)). This step will take O(n,n;r) which is time-
consuming in large-scale systems. Recall that we have set W, j) =1ifR(@, j) = 1and
W(z j) =wif R(l)= 0, then the above term can be rewritten as (1 — wz)R + w?FG’
where R =RoO (FG) In other words, the entries in R are the reconstructed preferences of
observed links in the updated preference matrix R, which is wvery sparse in real applications.

Moreover, the term W @ W © R in Eq. (7) is equivalent to R itself. Therefore, the updating
rule for Tr can be simplified as

Xr = (FRG)TG + a(FMF)Tf 9)
Yr =(1 - w)FR,GTG + w?(FFTFT;(G'G)Tg
+a(EDyF)Tr + BT (10)

Similarly, T can be updated with

To(i, j) = TG(i,j)‘/% (11)

@ Springer

Incremental one-class collaborative filtering... m

where
X6 =(G'R'P)TF + a(G'NG)Tg (12)
Y =(1 — w?)G'RFTr + w?(G'G) TG T (FF)Tr
+a(G'DgG) T + BTG (13)

The proposed algorithm is summarized in Alg. 1. It first specifies r, the dimension of
latent features F and G in step 1, and then initializes the transformation matrices T and T¢g
randomly in step 2 and 3. From step 4, the algorithm begins to update T (step 5) and T¢g
(step 6) alternatively until convergence.

Algorithm 1 ENCORE: The Incremental OCCF Algorithm with Co-Evolving Side Networks
Input: (1) the original recommendation input ' =< M, N, R >; (2) the per-
turbations on the system AI' =< AM, AN, AR >; (3) the original latent
features F and G; (4) weight w; and (5) regularized parameters « and §;
Output: (1) Transformation matrix for user latent features Tz and (2) transfor-
mation matrix for item latent features T
1: r < latent feature dimension of F and G
2: initialize TF as r X r non-negative random matrix
3: initialize Tg as r X r non-negative random matrix
4: while not converge do

. update Tr(i, j) < Tr(, j) ﬁj;jﬁ; as Eq. (6)

6 update Tg(i, j) < To(i, j)y/ 345 as Bq. (11)
7. end while
8: return T, T

3.2 Algorithm analysis

We analyze the effectiveness and efficiency of Alg. 1. In terms of the effectiveness of the
algorithm, we first show that the fixed point solutions of Eq. (6) and Eq. (11) satisfy the KKT
(Karush—Kuhn-Tucker) condition [3].

Theorem 1 The fixed point solutions of Eq. (6) and Eq. (11) satisfy the KKT condition.

Proof As Tr and T are solved in the same way, we only need to show that the fixed point
solution for T in Eq. (6) satisfies the KKT condition, the other one can be proved in the
same procedure.

First, the Lagrangian function for Eq. (4) is

Ly, =IlWO R —FTrT;G)|} + tr(TF'D;FTF)
— atr(TF'MFTg) + B Tr|% — tr(A'TF) (14)
where A is the Lagrange multiplier. By setting the derivative of L ;. w.r.t. Tr to 0, we get

2F(Wo WO FTrT;G)GTg (15)

@ Springer

112 C.Chenetal.

—F(WoWOR)GTg
+aTrF'D;F — aTpF'MF + BTr) = A
By the KKT slackness condition, we have
[-F' (WO W O R)GT; — «TF'MF
+F(WoWo FTFT;G)GTg
+aTrFDF + BTr), HTrG, j) =0 (16)
At the fixed point of Eq. (6), we have Xr (i, j) = YF (i, j), which implies that
[F'(WO W O R)GTg + «TF'MF](i, j)
=[F(WO WO (FTrT;G))GTg
+aTrFDyF+ BTFIG, /) (17)

Clearly, the above equation satisfies the KKT slackness condition in Eq. (16). Therefore, the
fixed point solution of Eq. (6) satisfies the KKT condition.

Theorem 1 states that the updating rules in Eq. (6) lead to a local optimal solution to
Eq. (4) at convergence. Also, it can be proved that by following the updating rule in Eq. (6),
the objective function in Eq. (4) decreases monotonically.

Combining Theorem 1 with the monotonic decreasing property, we can conclude that
Alg. 1 converges to the local optimal solution Tr for the objective function in Eq. (4).
Similarly, we have the local optimal solution Tg. The two matrices Tr and T form the
local optimal solution for Eq. (3).

For efficiency of the algorithm, we analyze the time complexity and space complexity of
Alg. 1 in Lemma 1 and Lemma 2, respectively.

Lemma 1 The time complexity of proposed algorithm is O (i, + mi)r + ((ny, +ni +r)r* +
m,r)t).

Proof See “Appendix”. O

Compared with the complexity of static OCCF algorithm in the previous section
(O(((my + mi + m)r + (n, + ni)r2)r)), the proposed ENCORE is more efficient, with
an O ((my, + m;)r) reduction in the time complexity in each iteration.

Lemma 2 The space complexity of proposed algorithm is O ((n, +n; +r)r +m, +m; +m,).

Proof See “Appendix”. O

3.3 Variations

In this section, we discuss some of the variant of ENCORE. First, when the weighting matrix
W is all-one matrix, ENCORE becomes a dynamic clustering algorithm, in which Tr and
T can be viewed as the cluster membership transition matrix. Second, when one or both
side networks are missing, the corresponding regularization term would be removed from the
objective function. In particular, when both sides of the networks were removed, ENCORE is
reduced to an incremental algorithm for the classic one class collaborative filtering problem.

@ Springer

Incremental one-class collaborative filtering... 113

Table 2 Statistics of datasets

Dataset Ciao Epinions
of users 6102 33,725

of items 12,082 43,542

of user links 75,861 328,455
of items links 283,284 249,397
of preferences 117,731 500,478
Mean degree of users 24.86 19.48
Cluster coefficient of users 0.13 0.10
Mean degree of items 23.45 11.46
Cluster coefficient of items 0.72 0.35

4 Evaluation

In this section, we evaluate the proposed ENCORE algorithm on two real datasets. The
experiments are designed to answer the following two questions.

— Effectiveness. How effective is ENCORE for OCCF problem with co-evolving side net-
works?
— Efficiency. How fast is ENCORE compared with batch-mode static counterpart?

4.1 Experimental setup

We first introduce the datasets used, comparing methods, evaluation metrics and experimental
settings before presenting the details of the experiments.

4.1.1 Datasets description

We use two real datasets Ciao [31] and Epinions [32] to evaluate the proposed ENCORE
method. Ciao and Epinions are two popular online product review websites in which users are
allowed to build connections and share experiences on the products with each other. To fit the
one-class collaborative filtering problem, all missing links and ratings that are no greater than
3 are viewed as negative examples (i.e., labeled as 0), while ratings that are greater or equal
to 4 are marked as positive examples (i.e., labeled as 1). The user side network contains the
trust relations between users, while the item side network describes the similarity between
items based on their reviews.> Both datasets have been preprocessed and used in [42] and
are publicly available. The statistics of the datasets are summarized in Table 2.

In our evaluation, the datasets are partitioned into three different groups. The first group
is the original training system which contains 50% of the ratings and the corresponding side
network links; the second group is the incremental system, which adds 1% links to the rating
matrix and the side network connections at each timestamp; the last group is the testing
system, which contains the rest of the data.

3 Similarity between items is calculated by the cosine similarity between TF-IDF (Term Frequency-Inverse
Document Frequency) [27] word vectors constructed from item reviews.

@ Springer

114 C.Chenetal.

4.1.2 Comparing methods

We compare ENCORE with the following baseline methods to demonstrate its effectiveness.

— ReRun. ReRun is the batch-mode static counterpart for ENCORE. At each timestamp, it
takes the current system snapshot as input networks and solves the optimization problem
in Eq. (1) from scratch.* As ReRun does not impose any transformation constraints on the
latent features in two consecutive timestamps, it can be used to validate the effectiveness
of the transformation model in ENCORE.

— M+R. M+R is a variant of ENCORE, which only contains user side network and pref-
erence matrix in the system.

— N+R. N+R is another variant of ENCORE, which only contains item side network and
preference matrix.

— R-MF. R-MF is a simple method for OCCF proposed in [24], which only utilizes the
preference matrix in the system for the recommendation.

— CLIiMF. CLiMF is also a matrix factorization-based method proposed in [30] that is
designed to improve the performance of top-k recommendations on binary relevance
data.

— R-SGD. R-SGD shares the same objective function with R-MF. Instead of calculating
the latent features at each timestamp, R-SGD modifies related latent features with newly
emerged ratings by stochastic gradient descent method.

— eNMF. eNMF is an incremental matrix factorization algorithm proposed in [38]. Here
we apply this algorithm to perform incremental update on the factorization results of the
preference matrix.

4.1.3 Evaluation metrics

In our experiments, we assess the effectiveness of ENCORE with MAP and R-MPR as
evaluation metrics.

— MAP. MAP (Mean Average Precision) is originally used to evaluate ranked documents
over a set of queries. Here it computes the mean average precision over all users in the
test set [24]. The larger the MAP is, the better the performance is.

— R-MPR. R-MPR (Reverse Mean Percentage Ranking) is a variation of MPR, which
is originally used to evaluate users’ satisfaction of items by a ranked list. A randomly
generated item list can achieve a MPR of 50% [22]. The smaller the MPR is, the better
the performance is. Here we set R-MPR to be 0.5-MPR, thus a larger R-MPR indicates a
better performance.

4.1.4 Machine

The experiments are performed on a machine with 2 Intel Xeon 3.5 GHz processors and
256 GB of RAM. The algorithms are implemented with MATLAB using a single thread. We
will release the code when the paper is published.

4 Eq. (1) is derived from wiZAN-Dual in [42]. Therefore, ReRun is equivalent to wiZan-Dual here.

@ Springer

Incremental one-class collaborative filtering... 115

Ciao
ReRun H ENCORE B M+R &2 N+R E R-MF & CLIMF O R-SGD 2 eNMF

0.04
ENCORE

0.035 + /

0.03
0.025

LS LSS
IISLILSSSSS LSS LS LSS SIS

s
§
R

NN |

A SIS IS LSS LSS LSS SIS S SIS SIS SIS S SIS SIS ST

9
7
0
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
PR

NN

Z

me4

A

Time2 Ti

Fig.2 MAP comparison on Ciao. Higher is better (best viewed in color)

4.2 Effectiveness results

We compare the proposed algorithm with other methods on both Ciao and Epinions datasets.
The results are shown from Figs. 2, 3, 4 and 5. We make the following observations from
these two figures.

— Inboth datasets, ENCORE achieves close performance with ReRun. Such results demon-
strate that ENCORE can effectively accommodate newly emerged links in the dynamic
system for the recommendation. It should be noted that here our goal is not to develop a
better recommendation algorithm that outperforms ReRun. Instead, our goal is to ensure
that the incrementally updated model with linear transformation at each time stamp can
closely approximate the performance of ReRun.

— Side networks between users and items are both important for improving the quality of
recommendation results. As we can see from Figs. 2, 3, 4 and 5, user network or item
network alone with the preference matrix cannot boost the recommendation quality com-
pared with the methods that use preference matrix only. However, when both networks
are added to the model, the performance can be improved significantly.

— For the two incremental update algorithms (ENCORE and eNMF), our proposed algo-
rithm ENCORE is consistently better than eNMF due to its effectiveness on exploiting
the information from side networks.

— The CLiMF method is designed to maximize the Mean Reciprocal Rank (MRR) for top-k
recommendations. Therefore, its MAP score is comparable to ENCORE on both datasets
as in Figs. 2 and 4. However, such scheme would ignore the recall on the recommended
items, which results in lower R-MPR scores as indicated in Figs. 3 and 5.

4.3 Efficiency results

Next, we evaluate the efficiency of ENCORE on both Ciao and Epinions. As the results
are similar, we only report the one on Ciao for brevity. In the experiment, we have varied
the dimension of latent features » with the same input data and evaluated the running time
ENCORE under different settings. It can be seen from Fig. 6 that the average running time
of ENCORE for a single iteration is shorter than the ReRun method. Specifically, as the
latent feature dimension r increases, the speed-up of ENCORE compared to ReRun becomes
larger accordingly. This observation is consistent with our time complexity analysis in the

@ Springer

C.Chenetal.

116

Ciao

ReRun & ENCORE B M+R EIN+R ER-MF £ CLIMF OR-SGD & eNMF

ENCORE

0.3

Time4 Time6 Time8 Timel0

Time2

son on Ciao. Higher is better (best viewed in color)

Fig.3 R-MPR compari;

inions

Ep
ENCORE B M+R B3 N+R ER-MF & CLIMF OR-SGD & eNMF

@ ReRun

0.02

Time4 Time6 Time8 Timel0

Time2

Higher is better (best viewed in color)

Fig.4 MAP comparison on Epinions.

Epinions
B ReRun N ENCORE B M+R @ N+R ER-MF & CLIMF OR-SGD @ eNMF

ENCORE

Time8

Timel0

e6

Tim

Time4

Time2

Fig.5 R-MPR comparison on Epinions. Higher is better (best viewed in color)

pringer

as

Incremental one-class collaborative filtering... 117

Fig.6 The running time of Ciao
RfeRun.versgs ENCORE. fora @ReRun ENCORE
single iteration on the Ciao . 0.6
dataset <

g 05¢

Z

c 04

2

-

g 03} i

=

2 0.2 7

[-T:] o

“ 01 =z 2

50
Dimension r

Fig.7 The running time of Ciao
ReRun versus ENCORE for one ReRun B ENCORE
timestamp (many iterations until 600

convergence) on the Ciao dataset

Running Time (s)

Dimension r

previous section that the proposed ENCORE algorithm has an O(r) factor speed-up over
its static counterpart (ReRun). Moreover, as shown in Fig. 7, the average running time of
ENCORE for one timestamp is much shorter than ReRun (with around 75% improvement).
This is mainly due to the fact that ENCORE has much fewer variables to optimize at each
timestamp compared to ReRun (i.e., 2r x r vs. (m + n) x r), which makes it converge faster
in a small number of iterations.

5 Related work

We review the related work from two parts: (1) collaborative filtering; and (2) dynamic
network analysis.

5.1 Collaborative filtering

Collaborative filtering is originally designed to provide recommendations to users where their
preferences to items are explicitly given in a multi-scale (e.g., score 1-5 ratings). Generally
speaking, existing collaborative filtering methods can be classified into three categories,
including memory-based methods [9], model-based methods [10] and the mixture of the
above two methods [14].

Despite the success of collaborative filtering in a large portion of explicit, multi-scale rec-
ommender systems, most real-world applications only have binary preference classes where

@ Springer

118 C.Chenetal.

users’ preferences are implicitly expressed (e.g., click of webpages, browse of news and
purchase of products). In response, one-class collaborative filtering has received a surge of
research interests in recent years. Existing one-class collaborative filtering (OCCF) algo-
rithms can be broadly classified into two categories: (1) pointwise regression methods; and
(2) pairwise ranking methods. First, pointwise regression methods attempt to learn latent fac-
tors for users and items to approximate the original ratings by minimizing a well-designed
loss function. The very first few attempts are credited to [11,24]. On top of that, Li et al. [22]
proposed to incorporate rich user side information to improve OCCF. Yao et al. [42] further
extended to propose a novel approach wiZAN-Dual by exploiting the user—user similarity and
item—item similarity. The proposed dual-regularized OCCF framework can also be extended
in a multi-layered scenario [5]. On the other hand, pairwise ranking methods such as BPR [28]
resorts to maximizing the pairwise ranking results on observed and unobserved user actions.
AKkin to pointwise-based methods, there are some attempts to consider side information such
as social relationships for ranking [25,43] and recommendation [13,39]. A more detailed
review of social recommendation can be referred to [33].

5.2 Dynamic network analysis

Many real networks are constantly evolving over time. In such dynamic systems, we not
only know structure of the network but also have the establishing time information associ-
ated to the edges. Such temporal information has been extensively explored to improve the
recommendation algorithms on static systems [7,15,26,29,40,41] and is often well-known as
temporal/sequential recommendation. However, it should be noted our proposed framework
using incremental matrix factorization is orthogonal to the aforementioned works as our goal
is not to improve the performance of recommendation with temporal information, but to
develop an efficient solution that can be used to maintain the freshness of the system from
previous timestamp.

Similarly, as the network structures of many real-world networks are continuously chang-
ing, some key network properties and learning models trained from historical data would
become stale over time and need to be updated to reflect such dynamics. Many research efforts
have been devoted along this line. For instance, Tong et al. [36] provided an efficient algorithm
to dynamically track node proximity and centrality on bipartite graphs. Chen et al. [4] tracked
the eigen-systems of dynamic networks which is important to many graph mining problems.
In addition, various dynamic algorithms are proposed for different applications, such as
low-rank approximation [6,35], node classification [2], community detection [34], feature
selection [21], network embedding [20] and incremental matrix factorization [12,37,38].
Another line of work focuses on monitoring the properties of dynamic networks. Leskovec
et al. [19] discovered that dynamic networks densify over time, and the network diameter
shrinks. While in [18], they studied dynamic networks from a microscopic perspective and
developed a network model to simulate the evolution process. A more detailed review of
dynamic network analysis can be found in [1].

6 Conclusions
In this paper, we propose a novel algorithm (ENCORE) to address the one-class collaborative

filtering problem with co-evolving networks. To effectively model the evolution of latent
features, we propose to solve the OCCF problem incrementally since most recommender

@ Springer

Incremental one-class collaborative filtering... 19

systems are changing in a smooth way. In detail, by assuming that the updated latent features
and the original features reside in the same latent feature space, we model the updated latent
features of users and items as linear transformed vectors from the original features. The
experimental results on two real datasets show that the proposed method can achieve similar
recommendation quality to the batch-mode static OCCF method while taking much less
running time.

Acknowledgements This work is supported by National Science Foundation under Grant Nos. 1947135, and
2003924 by the NSF Program on Fairness in Al in collaboration with Amazon under Award No. 1939725.
The content of the information in this document does not necessarily reflect the position or the policy of the
Government or Amazon, and no official endorsement should be inferred. The US Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.

Appendix
6.1 Proof for Lemma 1

Proof In Alg. 1, as term M, N, R, F and G remain the same during the iterations, we can
pre-compute related constant terms to avoid redundant computations. The complexities of
computing constant terms in Egs. (9)—(13) are O (njr® + i, r) for FRG; O (nyr? + i, r) for
F'MF; O (n,r?) for F'D ; F; O (n,r?) for F'F; O (n;r?) for G'G; O (n;r? + iiv;r) for G'NG;
and O (n;r?) for G'D;G. Thus, the complexity for pre-computing is O ((n,, +n)r2 + (i, +
i + m,)r). In each iteration, it takes O (n,r?) and O (n;r?) to compute FTr (i.e., F) and
GTg (i.e., G), respectively. The complexity of computing F'R,GTg is O (n;r2 + i, r), the
rest of the computations for updating Tr and T are both O (r3). Therefore, the overall
complexity for Alg. 1 is O((m, +m;)r + ((n, +n; + r)r2 4+ i, r)t), where ¢ is the number
of iterations in the algorithm. O

6.2 Proof for Lemma 2

Proof The algorithm requires a space of O (n,r + n;r) to store F and G, O(r?) to store the
transformation matrices Tr and T, and O (m,, +m; +m,) to store the updated rating matrix
and side networks. The space needed to compute and store the constant terms are O (n;r +r%)
for F'RG; O (nyr + r?) for F'MF and F'D;F; O(r?) for F'F and G'G; O (n;r + r?) for
G'NG and G’ D ; G, respectively. Therefore, the space costs for computing constant terms

are 0((nu + n;)r + r2) In each iteration, it takes a space of O ((n, + n;)r) to compute F
and G, O (/) to compute R,, O(n;r +) to compute F’/ R GTg, O(rz) for the rest of
the matrix multiplications to update Ty and T¢. Putting all these terms together, the overall
space complexity for Alg. 1is O((ny, + n; + r)r + my + m; + m;).]

References

Aggarwal C, Subbian K (2014) Evolutionary network analysis: a survey. ACM Comput Surv 47(1):10

. Aggarwal, CC, Li N (2011) On node classification in dynamic content-based networks. In: Proceedings
of the 2011 SIAM international conference on data mining, pp 355-366

3. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

4. Chen C, Tong H (2015) Fast eigen-functions tracking on dynamic graphs. In: Proceedings of the 2015

SIAM international conference on data mining, pp 559-567

o —

@ Springer

120 C.Chenetal.
5. Chen C, Tong H, Xie L, Ying L, He Q (2016) Fascinate: fast cross-layer dependency inference on multi-
layered networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 765-774
6. Chen X, Candan KS (2014) LWI-SVD: low-rank, windowed, incremental singular value decompositions
on time-evolving data sets. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp 987-996
7. Ding Y, Li X (2005) Time weight collaborative filtering. In: Proceedings of the 14th ACM international
conference on information and knowledge management, pp 485-492
8. Field DJ (1994) What is the goal of sensory coding? Neural Comput 6(4):559-601
9. Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for performing collab-
orative filtering. In: Proceedings of the 22nd annual international ACM SIGIR conference on research
and development in information retrieval, pp 230-237
10. Hofmann T (2004) Latent semantic models for collaborative filtering. ACM Trans Inf Syst 22(1):89-115
11. Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: Proceedings
of the 8th IEEE international conference on data mining, pp 263-272
12. Huang X, Wu L, Chen E, Zhu H, Liu Q, Wang Y, Center BTI (2017) Incremental matrix factorization:
a linear feature transformation perspective. In: Proceedings of the 26th international joint conference on
artificial intelligence, pp 1901-1908
13. Jiang M, Cui P, Wang F, Zhu W, Yang S (2014) Scalable recommendation with social contextual infor-
mation. IEEE Trans Knowl Data Eng 26(11):2789-2802
14. Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 426434
15. Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM
SIGKDD international conference on knowledge discovery and data mining, pp 447456
16. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature
401(6755):788-791
17. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in neural
information processing systems, pp 556-562
18. Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 462-470
19. LeskovecJ, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and
possible explanations. In: Proceedings of the 11th ACM SIGKDD international conference on knowledge
discovery in data mining, pp 177-187
20. LiJ,DaniH, Hu X, Tang J, Chang Y, Liu H (2017) Attributed network embedding for learning in a dynamic
environment. In: Proceedings of the 26th ACM international conference on conference on information
and knowledge management
21. Li J, Hu X, Jian L, Liu H (2016) Toward time-evolving feature selection on dynamic networks. In:
Proceedings of the 2016 IEEE international conference on data mining, pp 1003—1008
22. LiY,HuJ, Zhai C, Chen Y (2010) Improving one-class collaborative filtering by incorporating rich user
information. In: Proceedings of the 19th ACM international conference on information and knowledge
management, pp 959-968
23. Ma H, Zhou D, Liu C, Lyu MR, King I (2011) Recommender systems with social regularization. In:
Proceedings of the 4th ACM international conference on web search and data mining, pp 287-296
24. Pan R, Zhou Y, Cao B, Liu NN, Lukose R, Scholz M, Yang Q (2008) One-class collaborative filtering.
In: Proceedings of the 8th IEEE international conference on data mining, pp 502-511
25. Pan W, Chen L (2013) Gbpr: group preference based bayesian personalized ranking for one-class col-
laborative filtering. In: Proceedings of the 23rd international joint conference on artificial intelligence,
vol 13, pp 2691-2697
26. QinJ, Ren K, Fang Y, Zhang W, Yu Y (2020) Sequential recommendation with dual side neighbor-based
collaborative relation modeling. In: Proceedings of the 13th international conference on web search and
data mining, pp 465-473
27. Rajaraman A, Ullman JD (2011) Mining of massive datasets. Cambridge University Press, Cambridge
28. Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) Bpr: Bayesian personalized ranking
from implicit feedback. In: Proceedings of the 25th conference on uncertainty in artificial intelligence,
pp 452461
29. Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized markov chains for next-

basket recommendation. In: Proceedings of the 19th international conference on world wide web, pp
811-820

@ Springer

Incremental one-class collaborative filtering... 121

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N, Hanjalic A (2012) Climf: learning to maximize
reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the sixth ACM conference on
recommender systems, pp 139-146

Tang J, Gao H, Liu H (2012) mtrust: discerning multi-faceted trust in a connected world. In: Proceedings
of the 5th ACM international conference on web search and data mining, pp 93-102

Tang J, Gao H, Liu H, Das Sarma A (2012) etrust: understanding trust evolution in an online world.
In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 253-261

Tang J, Hu X, Liu H (2013) Social recommendation: a review. Soc Netw Anal Min 3(4):1113-1133
Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 677-685

Tong H, Papadimitriou S, Sun J, Yu PS, Faloutsos C (2008) Colibri: fast mining of large static and dynamic
graphs. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and
data mining, pp 686-694

Tong H, Papadimitriou S, Yu PS, Faloutsos C (2008) Fast monitoring proximity and centrality on time-
evolving bipartite graphs. Stat Anal Data Min 1(3):142-156

Vinagre J, Jorge AM, Gama J (2014) Fast incremental matrix factorization for recommendation with
positive-only feedback. In: International conference on user modeling, adaptation, and personalization.
Springer, pp 459-470

Wang F, Tong H, Lin CY (2011) Towards evolutionary nonnegative matrix factorization. In: Twenty-fifth
AAAI conference on artificial intelligence

Wang X, Lu W, Ester M, Wang C, Chen C (2016) Social recommendation with strong and weak ties. In:
Proceedings of the 25th ACM international on conference on information and knowledge management,
pp 5-14

WuL, GeY, Liu Q, Chen E, Hong R, Du J, Wang M (2017) Modeling the evolution of users preferences
and social links in social networking services. IEEE Trans Knowl Data Eng 29(6):1240-1253

Xiong L, Chen X, Huang TK, Schneider J, Carbonell JG (2010) Temporal collaborative filtering with
bayesian probabilistic tensor factorization. In: Proceedings of the 2010 SIAM international conference
on data mining. SIAM, pp 211-222

Yao Y, Tong H, Yan G, Xu F, Zhang X, Szymanski BK, Lu J (2014) Dual-regularized one-class collabo-
rative filtering. In: Proceedings of the 23rd ACM international conference on conference on information
and knowledge management, pp 759-768

Zhao T, McAuley J, King I (2014) Leveraging social connections to improve personalized ranking for
collaborative filtering. In: Proceedings of the 23rd ACM international conference on conference on infor-
mation and knowledge management, pp 261-270

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Chen Chen is currently a software engineer at Google. Before joining
Google, Chen got her Ph.D. degree from Arizona State University. Her
research has been focusing on the connectivity of complex networks,
which has been applied to address pressing challenges in various high-
impact domains, including social media, bioinformatics, recommenda-
tion, and critical infrastructure systems. Her research has appeared in
top-tier conferences (including KDD, ICDM, SDM, and DASFAA),
and prestigious journals (including IEEE TKDE, ACM TKDD, and
SIAM SAM). Chen has received several awards, including “Bests of
KDD”, “Bests of SDM” and Rising Star in EECS.

@ Springer

122

C.Chenetal.

@ Springer

Yinglong Xia is an Applied Research Scientist in Facebook, working
on Graph Learning platforms and applications. Prior to that, he was a
chief architect in Futurewei Technologies on Cloud Al platforms and
a research staff member at IBM Research on graph database and rea-
soning frameworks. He received his PhD at USC in 2010 and MS
from Tsinghua University in 2006. He has published 70+ technical
papers and filed 30+ patents. He is an associate editor of IEEE trans.
on Knowledge and Data Engineering (TKDE), and IEEE trans. on Big
Data (TBD); he was a general co-chair of IEEE HiPC’19, a vice co-
chair of IEEE BigData’19, a SPC/TPC member of IJCAI’20, KDD’20,
CIKM’20, VLDB’20, and ICDE’20, etc.

Hui Zang is currently a tech lead and software engineer at Google.
Previously, she was a distinguished data scientist at Futurewei Tech-
nologies, a lead data scientist at Guavus Inc., and a research scientist
at Sprint Labs. She received her B.S. degree in computer science from
Tsinghua University, China, and the M.S. and Ph.D. degrees in com-
puter science from the University of California, Davis. Her research
has focused on applying AI and machine learning techniques to build
data-driven products and to optimize the performance of computing
systems. She is the author of the book “WDM Mesh Networks - Man-
agement and Survivability” (Kluwer Academic, 2002). She has pub-
lished over seventy conference papers and journal articles and currently
has over thirty US patents granted and many more pending. Dr. Zang
is a senior member of IEEE.

Jundong Li is an assistant professor of the Department of Electrical
and Computer Engineering at the University of Virginia, with a joint
appointment in the Department of Computer Science and the School
of Data Science. He received his Ph.D. degree in Computer Science at
Arizona State University in 2019, M.Sc. degree from the Department
of Computing Science at the University of Alberta in 2014, and B.Eng.
degree from the College of Computer Science and Technology at Zhe-
jiang University in 2012. His research interests include data mining,
machine learning, and social computing.

Incremental one-class collaborative filtering... 123

Huan Liu is a professor of Computer Science and Engineering at Ari-
zona State University. He obtained his Ph.D. in Computer Science at
University of Southern California and B.Eng. in Computer Science
and Electrical Engineering at Shanghai JiaoTong University. Before he
joined ASU, he worked at Telecom Australia Research Labs and was
on the faculty at National University of Singapore. At Arizona State
University, he was recognized for excellence in teaching and research
in Computer Science and Engineering and received the 2014 Presi-
dent’s Award for Innovation. His research interests are in data mining,
machine learning, social computing, and artificial intelligence, investi-
gating interdisciplinary problems that arise in many real-world, data-
intensive applications with high-dimensional data of disparate forms
such as social media. His well-cited publications include books, book
chapters, encyclopedia entries as well as conference and journal papers.
He is a co-author of a text, Social Media Mining: An Introduction,
Cambridge University Press. He is a founding organizer of the Inter-

national Conference Series on Social Computing, Behavioral-Cultural Modeling, and Prediction, and Field
Chief Editor of Frontiers in Big Data and its Specialty Chief Editor of Data Mining and Management. He is
a Fellow of ACM, AAAI, AAAS, and IEEE. More can be found at http://www.public.asu.edu/~huanliu.

Hanghang Tong is currently an associate professor at Department
of Computer Science at University of Illinois at Urbana-Champaign.
Before that he was an associate professor at School of Comput-
ing, Informatics, and Decision Systems Engineering (CIDSE), Ari-
zona State University. He received his M.Sc. and Ph.D. degrees from
Carnegie Mellon University in 2008 and 2009, both in Machine Learn-
ing. His research interest is in large scale data mining for graphs
and multimedia. He has received several awards, including SDM/IBM
Early Career Data Mining Research award (2018), NSF CAREER
award (2017), ICDM 10- Year Highest Impact Paper award (2015),
four best paper awards (TUP’14, CIKM’12, SDM’08, ICDM’06),
seven ’bests of conference’, 1 best demo, honorable mention (SIG-
MOD’17), and 1 best demo candidate, second place (CIKM’17). He
has published over 100 refereed articles. He is the Editor-in-Chief of
SIGKDD Explorations (ACM), an action editor of Data Mining and
Knowledge Discovery (Springer), and an associate editor of Knowl-

edge and Information Systems (Springer) and Neurocomputing Journal (Elsevier); and has served as a pro-
gram committee member in multiple data mining, database and artificial intelligence venues (e.g., SIGKDD,
SIGMOD, AAAIL, WWW, CIKM, etc.).

Affiliations

Chen Chen' - Yinglong Xia?2

Hanghang Tong®

B4 Chen Chen
chenannie45 @gmail.com
Yinglong Xia
yxia@fb.com

Hui Zang
huizang @ gmail.com

Jundong Li
jlégk @virginia.edu

- Hui Zang' - Jundong Li3 - Huan Liu*

@ Springer

http://www.public.asu.edu/~huanliu

124 C.Chenetal.

Huan Liu
huanliu@asu.edu

Hanghang Tong
htong@illinois.edu
1 Google, Inc., Mountain View, USA
2 Facebook, Inc., Menlo Park, USA
University of Virginia, Charlottesville, USA
Arizona State University, Tempe, USA
5 University of Illinois at Urbana-Champaign, Champaign, USA

@ Springer

	Incremental one-class collaborative filtering with co-evolving side networks
	Abstract
	1 Introduction
	2 Problem definition and preliminaries
	2.1 Problem definition
	2.2 Preliminaries

	3 Proposed algorithm and analysis
	3.1 The proposed algorithm
	3.2 Algorithm analysis
	3.3 Variations

	4 Evaluation
	4.1 Experimental setup
	4.1.1 Datasets description
	4.1.2 Comparing methods
	4.1.3 Evaluation metrics
	4.1.4 Machine

	4.2 Effectiveness results
	4.3 Efficiency results

	5 Related work
	5.1 Collaborative filtering
	5.2 Dynamic network analysis

	6 Conclusions
	Acknowledgements
	Appendix
	6.1 Proof for Lemma 1
	6.2 Proof for Lemma 2

	References

