
On the Eigen-Functions of Dynamic Graphs: Fast Tracking and Attribution
Algorithms

Chen Chen∗ and Hanghang Tong

Department of Computer Science, Arizona State University, Tempe, AZ 85281, USA

Received 10 September 2015; revised 6 January 2016; accepted 5 February 2016
DOI:10.1002/sam.11310

Published online in Wiley Online Library (wileyonlinelibrary.com).

Abstract: Eigen-functions are of key importance in graph mining since they can be used to approximate many graph
parameters, such as node centrality, epidemic threshold, graph robustness, with high accuracy. As real-world graphs are changing
over time, those parameters may get sharp changes correspondingly. Taking virus propagation network for example, new
connections between infected and susceptible people appear all the time, and some of the crucial infections may lead to large
decreasing on the epidemic threshold of the network. As a consequence, the virus would spread around the network quickly.
However, if we can keep track of the epidemic threshold as the graph structure changes, those crucial infections would be
identified timely so that counter measures can be taken proactively to contain the spread process. In our paper, we propose
two online eigen-functions tracking algorithms which can effectively monitor those key parameters with linear complexity.
Furthermore, we propose a general attribution analysis framework which can be used to identify important structural changes in
the evolving process. In addition, we introduce an error estimation method for the proposed eigen-functions tracking algorithms
to estimate the tracking error at each time stamp. Finally, extensive evaluations are conducted to validate the effectiveness and
efficiency of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal,
2016

Keywords: dynamic graph; connectivity; graph spectrum

1. INTRODUCTION

To better understand the node centrality and connectivity
of graphs, various graph parameters have been invented for
different tasks. Though different on their definitions, many
of those parameters can be well approximated by some well
defined eigen-functions. For example, in node centrality
analysis, one commonly used parameter is eigenvector
centrality [1], which is defined with the leading eigenvector
of the graph. As for graph connectivity, frequently used
parameters include epidemic threshold ([2–4]), clustering
coefficient [5], graph robustness ([6–8]), eigen-gap, etc.
For epidemic threshold, Prakash et al. found that the
tipping point for the dissemination process in arbitrary
graph is controlled by the leading eigenvalue of certain
system matrix associated with the graph [3]. For clustering
coefficient calculation, the most time consuming part is
counting the number of triangles in the graph, which is
of O(n3) complexity. In ref. [9], Tsourakakis proved that

∗ Correspondence to: Chen Chen (chen_chen@asu.edu)

the number of triangles in a graph can be accurately
estimated with its top eigenvalues. Similar to clustering
coefficient, Chan et al. showed that natural connectivity
[10], a good measurement for graph robustness, can also
be approximated with the top eigenvalues of the graph.
Moreover, as shown in ref. [11], the expansion property of
a graph can be measured with its eigen-gap between first
and second eigenvalues [12].

Most of the graph parameters mentioned above are all
based on static graphs. However in real-world applications,
the graph structure evolves over time. In some cases,
subtle changes on the graph structure may lead to huge
difference on some of its properties. For example, when
Ebola virus was first brought to the US continent, some
emerging connections in the contact network would greatly
reduce the epidemic threshold of the graph, and eventually
cause the outbreak of the disease. By monitoring those key
parameters as graph evolves and analyzing the attribution
for sharp parameter changes timely, we would be able
to get prepared for emergent events at an early stage.
Another application scenario is social network. In websites

© 2016 Wiley Periodicals, Inc.

2 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

like Facebook and Twitter, new connections between users
emerge all the time, which would in turn change the
influential individuals in the network. It is crucial for online
marketing companies to keep track of those changes since
their advertisements targeting strategies may need to be
modified accordingly.

For eigen-functions tracking problem, simply
re-computing the eigen-pairs whenever the graph structure
changes is computationally costly over fast-changing large
graphs. The popular Lanczos method for computing top-
k eigen-pairs would require O(mk + nk2) time, where m

and n are the numbers of edges and nodes in the graph,
respectively. Although the complexity seems acceptable for
one-time calculation in static graphs, it would be too expen-
sive for large dynamic graphs. To address this challenge,
we consider a way of updating the eigen-pairs incremen-
tally instead of re-computing them from scratch at each time
stamp. In this paper, we propose two online algorithms to
track the eigen-pairs of a dynamic graph efficiently, which
bear linear time complexities with respect to the number of
nodes n in the graph and the number of changed edges s at
current stamp. Based on these algorithms, we introduce a
general attribution analysis framework for identifying key
connection changes that have largest impact on the graph.
Last, to control the accumulated tracking error of eigen-
functions, we propose an error estimation method to detect
sharp error increase timely so that the accumulated error
can be eliminated by restarting the tracking algorithms.

In addition to the problem definition, the main contribu-
tions of this paper can be summarized as follows:

• Algorithms. We propose two online algorithms to
track the top eigen-pairs of a dynamic graph,
which in turn enable us to track a variety of
important network parameters based on certain eigen-
functions. In addition, we provide a framework for
attribution analyses on eigen-functions and a method
for estimating tracking errors.

• Evaluations. We evaluate our methods with other
eigen-pair update algorithms on real-world datasets,
to validate the effectiveness and efficiency of the
proposed algorithms.

The rest of the paper is organized as follows: In Section
2, a brief survey of related studies on graph spectrum,
dynamic graphs and general graph mining is provided.
A formal problem definition is given in Section 3. Section 4
gives the first-order and high-order eigen-functions tracking
algorithms, attribution analysis framework, error estima-
tion algorithm, and corresponding analysis. Experimental
results are shown in Section 5 and we conclude in
Section 6.

2. RELATED WORK

Eigen-pairs of a graph can be derived to various
important parameters, which can be used to describe the
graph from different aspects. Those parameters are widely
used for different graph mining tasks. Tracking those
eigen-functions on fast-changing dynamic graphs can be
abstracted as a process of conducting evolutionary analysis
on streaming networks. Here we organize our related work
into three sections: (A) work on applications of different
eigen-functions; (B) work on dynamic graph analysis; and
(C) general graph mining.

2.1. Applications of Eigen-Functions

According to ref. [11], the eigen-pairs on adjacency
matrix and those on Laplacian matrix of a graph have
different meanings. The eigenvalues of adjacency matrix
can be used to determine the path capacity of a graph [13],
while for Laplacian matrix, they indicate the connectivity of
the graph. Based on these two meanings, a large amount of
work was developed regarding to path capacity and graph
connectivity, respectively.

In refs. [9,14], Tsourakakis found that the total number
of triangles in the graph and number of triangles that
contain certain node can be efficiently estimated with the
eigenvalues of graph adjacency matrix. In refs. [2,15],
Ganesh et al. and Chakrabati et al. proved that the epidemic
threshold for SIS model on arbitrary undirected network
is related to the leading eigenvalue of graph adjacency
matrix. Prakash et al. further improved their work by
proving that the threshold for a variety of cascade models
on arbitrary network depend on the first eigenvalue of
certain system matrix associated with the network[3]. Tong
et al. proposed a node manipulation method in ref. [16]
and edge manipulation method in ref. [17] to optimize the
change of first eigenvalue in the graph. In Le et al. [18]
found that most eigenvalue optimization methods perform
poorly when the eigen-gap [11] of the graph is small and
proposed MET algorithm for eigenvalue minimization in
such ”small gap” graphs. In, Hoory et al. [12] introduced the
concept of expansion property of the graph, which inspired
many network robustness related works [19,20]. In, Chan
et al. [7] proposed a more general robustness measurement
and provided corresponding graph manipulating strategies
(on both nodes and edges) to optimize the robustness
score. Recently, they showed that eigen-pairs can also be
used to locate robust subgraphs in the network in [21].
On the other hand for Laplacian matrix of the graph,
Newman showed that the eigen-pairs of Laplacian matrix
can be used for community detection [22,23]. In our work,
we will focus on the eigen-functions of graph adjacency
matrix.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 3

2.2. Dynamic Graphs Analysis

Dynamic graph analysis has attracted much attention in
recent years. Aggarwal and Subbian have made a thorough
summary of related research in ref. [24]. The research on
dynamic graph analysis can be generally sorted into two
categories: (A) monitoring the change on the evolving graph
and (B) efficiently updating the data mining results as graph
changes.

In Leskovec et al. [25,26] discovered the growth pattern
of real graphs by their densities and diameters. As graph
mining tasks vary from one another, the parameters tracked
in the process are different. In ref. [27], two online
algorithms were provided for tracking node proximity and
centrality on bipartite graphs. In, Malliaros et al. [28]
defined a new graph robustness property based on top k

eigen-pairs of the graph, and proposed an algorithm to
detect communities and anomalies. Similar mechanism for
anomaly detection was used in ref. [29] based on eigen-
pairs of dependency matrix of the graph. Ferlez et al. [30]
proposed a dynamic graph monitoring algorithm based on
MDL (Minimum Description Length) [31] which can be
used to detect the changing communities in the evolving
process. In ref. [32], a graph kernel tracking algorithm was
proposed for dynamic graphs. The other area of research
that is remotely related to our work is evolutionary spectral
clustering on graphs. In, Ning et al. [33] proposed an
incremental spectral clustering algorithm based on iterative
update on the eigen-system of the graph.

2.3. General Graph Mining

Graph mining has been a hot research topic for years.
Depending on the type of the graph, graph mining related
research can be classified into two categories: (1) single-
layered graph mining and (2) multi-layered graph min-
ing. For single-layered graphs, classic works include
pattern and law mining [34–36], frequent substructure
discovery [37–39], community mining and graph parti-
tion [40,41], proximity [42–44], graph sampling [45,46],
information propagation [47–49], etc. As for multi-layered
graphs, one of the key problem being studied is cas-
cading failure in interdependent system [50,51]. In refs.
[52–55], different types of two-layered interdependent net-
works were thoroughly analyzed. In refs. [56,57], different
kinds of more generally structured multi-layered networks
were studied.

3. PROBLEM DEFINITION

In this section, we introduce the notations used through
out the paper, and four important eigen-functions in graph

Table 1. Symbols used in text.

Symbol Definition and Description

Gt(V,E) undirected, unipartite network at
time t

m number of edges in the network
n number of nodes in the network
B, C, . . . matrices (bold upper case)
b, c, . . . vectors (bold lower case)
At adjacency matrix of Gt(V,E) at

time t

�At perturbation matrix from time
t to t + 1

�(Gt) number of triangles in Gt

S(Gt) robustness score of Gt

Gap(Gt) eigen-gap of Gt

(λj
t , uj

t) j th eigen-pair of At

[�At]t=t1...t2 perturbation matrices of dynamic
graph from time t1 to t2

[(�k
t , Ut

k)]t=t1...t2 top k eigen-pairs from time
t1 to t2

[�(Gt)]t=t1...t2 �(G) from time t1 to t2
[S(Gt)]t=t1...t2 S(G) from time t1 to t2

mining, followed by a formal definition of eigen-functions
tracking problem.

3.1. Notations

The symbols used throughout the text is shown in
Table 1. We consider the graph in each time stamp
Gt(V,E) is undirected and unipartite. In consistent with
standard notation, we use bold upper-case for matrices (e.g.,
B), and bold lower-case for vectors (e.g., b). For each time
stamp, the graph is represented by its adjacency matrix At .
�At denotes the perturbation matrix from time t to t + 1.
(λt

j , uj
t) is the j th eigen-pair of At . The number of triangles

and robustness score of the graph at time t are represented
as �(Gt) and S(Gt), respectively.

With the above notations, the eigen-function is defined
as a function that maps eigen-pairs of the graph to
certain graph attribute or attribute vector, which can be
expressed as

f : (�k, Uk) → R
x(x ∈ N) (1)

3.2. Important Eigen-Functions

3.2.1. Eigenvalues and Eigenvectors

Since the eigen-pairs of a graph are important attibutes
themselves, the simplest eigen-function is therefore an
identity function as follows:

f ((�k, Uk)) = (�k, Uk) (2)

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

4 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

The eigenvalues of a graph’s adjacency matrix can be
used to measure the path capacity of the graph [13], while
the eigenvectors can be used to evaluate the centrality of
nodes [1], or to detect interesting subgraphs [58].

In most of the applications, only top k (k varies under
different settings) eigen-pairs (�k

t , Ut
k) are used. Therefore

it is not necessary to compute the complete set of eigen-
pairs in real analysis.

3.2.2. Number of Triangles in Graph

The number of triangles in a graph plays an impor-
tant role in calculating clustering coefficient and related
attributes. The brute-force algorithm for solving this prob-
lem is of complexity O(n3). State-of-the-art algorithm has
reduced the complexity to O(n2.373) [59], but this is still
not a scalable algorithm on real-world large datasets. In,
Tsourakakis proposed [9] a fast triangle counting algo-
rithm which showed that the number of triangles in a
graph(�(G)) can be estimated using Eq. (3).

f ((�k, Uk)) = �(G) = 1

6

k∑

i=1

λ3
i (3)

By Eq. (3), number of triangles �(G) therefore becomes a
function of eigenvalues �k . Again, for real-world graphs,
usually, we only need top k eigenvalues to achieve a
good approximation for triangle counting. For example,
experiments in ref. [9] showed that picking top 30 eigen-
pairs can achieve an accuracy of at least 95% in most
graphs.

3.2.3. Robustness Measurement

The robustness score of a network evaluates it tolerance
under error and external attacks. Although there are
many kinds of robustness measurements being used in
graph analysis, few of them can act as an universal
standard that can fully express the resilience of the
network from different points of view. Chan et al.
provided a thorough analysis of different robustness
measurements and proposed the idea of using natural
connectivity as robustness score, which overcomes most of
the shortcomings that previous measurements have [7]. The
definition of robustness score(S(G)) [7] is shown in Eq. (4).

f ((�k, Uk)) = S(G) = ln(
1

k

k∑

j=1

eλj) (4)

By Eq. (4), robustness score S(G) is also a function of
eigenvalues �k .

Once again, In, Chan et al. [7] found that top k (k = 50
in their study) eigen-pairs are sufficient for estimating
robustness score.

3.2.4. Eigen-Gap

The eigen-gap of a graph is an important parameter in
expander graph theory and is defined as the difference
between the largest and second largest (in module)
eigenvalues of the graph (as shown in Eq. (5)).

f ((�k, Uk)) = Gap(G) = λ1 − λ2 (5)

In expander graph theory, a graph is considered to have a
good expansion property if it is both sparse and highly
connected [12]. By Cheeger inequality, the expansion
property of a graph is strongly correlated to its eigen-
gap [11]. As a result, the eigen-gap of the graph can be
used as another measurement for its robustness.

3.3. Problem Definition

In all the above cases, the network parameters of interest
(e.g., epidemic threshold, eigen centrality, number of
triangles, robustness measurement, eigen-gap) can always
be expressed as functions of eigen-pairs of the underlying
graph. What is more, for real graphs, it is often sufficient to
use top-k eigen-pairs to achieve a high accuracy estimation
of these parameters. Therefore, in order to track these
parameters on a dynamic graph, we only need to track
the corresponding top-k eigen-pairs at each time stamp.
Formally, the eigen-function tracking problem is defined
as follows. Once the top-k eigen-pairs are estimated, we
can use Equ (2) to (5) to update the corresponding eigen-
functions.

Problem 1 Top-k Eigen-Pairs Tracking

Given: (1) a dynamic graph G tracked from time t1 to t2
with starting matrix At1 , (2) an integer k, and (3) a
series of perturbation matrices [�At]t=t1,...t2−1;

Output: the corresponding top-k eigen-pairs at each
time stamp [(�k

t , Ut
k)]t=t1,...,t2 .

4. Trip: TRACKING EIGEN-PAIRS

In this section, we present our solutions for Problem 1.
We start with a baseline solution (Trip-Basic), and then
present its high-order variant (Trip), followed by the
attribution analysis framework for different eigen-functions
and an error estimation method.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 5

Fig. 1 Incremental update for eigen-pairs tracking. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

4.1. Key Idea

The key idea for Trip-Basic and Trip is to incremen-
tally update the eigen-pairs with corresponding perturbation
terms at each time stamp. By matrix perturbation the-
ory[60], we have the following perturbation equation

(At + �At)(uj
t + �uj) = (λt

j + �λj)(uj
t + �uj) (6)

As the perturbation matrix is often very sparse, it is natural
to assume that graphs in two consecutive time stamps share
a fixed eigen-space. Therefore, the perturbation eigenvector
�uj can be expressed as �uj = ∑k

i=1 αij ui
t , which is the

linear combination of old eigenvectors. Taking the two
dimensional eigen-space in Fig. 1 as an example, the old
eigenvectors are u1

t and u2
t marked in orange; the new

eigenvectors u1
t+1 and u2

t+1 (in green) can be decomposed
into old eigenvectors u1

t , u2
t and perturbation eigenvectors

�u1, �u2 in the same plane.
Expanding Eq. (6), we get

Atuj
t + �Atuj

t + At�uj + �At�uj

= λt
j uj

t + �λj uj
t + λt

j�uj + �λj�uj

By the fact that Atuj
t = λt

j uj
t , the perturbation equation

can be simplified as

�Atuj
t + At�uj +�At�uj = �λj uj

t + λt
j�uj + �λj�uj

(7)

Multiplying the term uj
t ′ on both sides; as eigenvectors are

of unit length, we have

uj
t ′�Atuj

t + uj
t ′�At�uj = �λj + uj

t ′�λj�uj (8)

As we assume that �uj � uj and �λj � λj , the high
order terms uj

t ′�At�uj and uj
t ′�λj�uj in Eq. (8) can

be discarded without losing too much accuracy. Therefore,
�λj can be estimated as

�λj = uj
t ′�Atuj

t (9)

The difference between Trip-Basic and Trip lies in their
ways of estimating perturbation eigenvectors, which will be
discussed in the following subsections.

4.2. Trip-Basic

Trip-Basic is a first-order eigen-pair tracking method,
which ignores the high-order terms in the perturba-
tion equation when updating eigenvectors at each time
stamp. By removing the high-order terms, the perturbation
equation Eq. (7) can be written as

�Atuj
t + At�uj = �λj uj

t + λt
j�uj

Replacing all �uj terms with
∑k

i=1 αij ui
t and multiplying

the term up
t ′ (p �= j) on both sides, by applying the

orthogonality property of eigenvectors to the new equation,
we can solve the coefficient αpj as

αpj = up
t ′�Atuj

t

λt
j − λt

p

Therefore �uj can estimated as

�uj =
k∑

i=1,i �=j

(
ui

t ′�Atuj
t

λt
j − λt

i

ui
t) (10)

Suppose At is perturbed with a set of edges �E =<

p1, r1 >, . . . , < ps, rs > where s is the number of non-
zero elements in perturbation matrix �A. In Eq. (10), the
term uj

t ′�Auj
t can be expanded as

uj
t ′�Atuj

t =
∑

<p,r>∈�E

�At (p, r)upj
turj

t (11)

Eqs. (10) and (11) naturally lead to our base solution (Trip-
Basic) for solving Problem 1 as follows.

The approximated eigen-pairs for each time stamp is
computed from steps 2 to 10. Each �λj and �uj is
calculated from steps 3 to 7 by Eqs. (10) and (11). At steps
8 and 9, λt

j and uj
t is updated with �λj and �uj . Note

that after updating the eigenvector in step 9, we normalize
each of them to unit length.

4.2.1. Complexity Analysis

The efficiency of proposed Algorithm 1 is summarized
in Lemma 1. Both time complexity and space complexity
is linear with respect to the total number of the nodes in
the graph (n) and total number of the time stamps (T).

LEMMA 1: Complexity of First Order Eigen-Function
Tracking. Suppose T is the total number of the time

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

6 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

stamps, s is the average number of perturbed edges in
[�At]t=t1,...t2−1, then the time cost for Algorithm 1 is
O(T k2(s + n)); the space cost is O(T nk + s).

Proof: In each time stamp from time t1 to t2 − 1, top k

eigen-pairs are updated in steps 2-10. By Eq. (11), the
complexity of computing term uj

t ′�Atuj
t is O(s), so

the overall complexity of step 5 is O(s + n). Therefore
calculating �uj from steps 4 to 6 takes O(k(s + n)). In step
7, computing �λj takes another O(s). Updating λt

j and uj
t

in step 8 and 9 takes O(1) and O(n). Therefore updating
all top-k eigen-pairs Uk

t and �t
k takes O(k2(s + n)) and

O(ks), respectively. Thus the overall time complexity for
T iterations is O(T k2(s + n)).
For space cost, it takes O(k) and O(nk) to store �t

k and
Uk

t at each time stamp. In the update phase from step 2 to
10, it takes O(s) to store �At , O(1) to update λt

j and O(n)

to update uj
t . However the space used in the update phase

can be reused in each iteration. Therefore the overall space
complexity for T time stamps takes a space of O(T nk + s).
�

4.3. Trip

The baseline solution in Algorithm 1 is simple and
straight-forward, but it has the following limitations. First,
the approximation error of first order matrix perturbation is
in the order of ‖�At‖. In other words, the quality of such
approximation might decrease quickly with respect to the
increase of ‖�At‖. Second, the approximation quality is
highly sensitive to the small eigen-gap of At as indicated
by Eq. (10). In order to address these limitations, we further
propose Algorithm 2 by adopting the high-order matrix
perturbation to update the eigen-pairs of At+1. The main

difference between Algorithm 2 and Algorithm 1 is that we
take high-order terms in the perturbation equation (Eq. (7))
into consideration while updating eigenvectors. Similar to
Trip-Basic we replace all �uj terms with

∑k
i=1 αij ui

t

and multiplying the term up
t ′ (for 1 ≤ p ≤ k, p �= j)

on both sides. By applying the orthogonality property of
eigenvectors to the new equation, we have

Xt (p, j) + αpjλ
t
p +

k∑

i=1

Xt (p, i)αij = αpjλ
t
j + αpj�λj

where Xt = Ut
k
′
�AtUt

k . Reorganizing the terms in the
above equation, we have

Xt (p, j) − αpj (λ
t
j + �λj − λt

p) +
k∑

i=1

Xt (p, i)αij = 0

By defining v = λt
j + �λj − λt

p for p = 1, . . . , k, Dt =
diag(v) and αj = [α1j , . . . , αkj] , the above equation can
be expressed as

Xt (:, j) − Dtαj + Xtαj = 0

Solve the above equation for αj, we have

αj = (Dt − Xt)−1Xt (:, j)

1 Here the diag function works the same with the one in Matlab.
When apply to a matrix, diag returns a vector of the main diagonal
elements of the matrix; when apply to a vector, it returns a square
diagonal matrix with the elements of vector on the main diagonal.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 7

In Algorithm 2, the top-k eigen-pairs at each time stamp
is updated from step 2 to 11. In step 2, matrix Xt is cal-
culated for computing ��k and �Uk . In step 4, all top-k
eigenvalues �k are updated by ��k . From step 6 to 10,
each uj

t is updated according to the derivations of the eigen
update rule in mentioned above. Again, after we update the
eigenvectors in step 9, we normalize each of them to unit
length.
Complexity Analysis The efficiency of Algorithm 2 is
given in Lemma 2. Compared with Trip-Basic, both time
and space complexity are still linear with respect to total
number of nodes in the graph and total number of time
stamps, with a slight increase in k, which is often very
small.

LEMMA 2: Complexity of High Order Eigen-Function
Tracking. Suppose T is the total number of time
stamps, s is the average number of perturbed edges in
[�At]t=t1,...t2−1, then the time cost for Algorithm 2 is
O(T (k4 + k2(n + s))); the space cost is O(T nk + k2 + s).

Proof: In each time stamp from time t1 to t2 − 1, top k

eigen-pairs are updated in steps 2-11. Using the update
rule provided in Eq. (11), calculating Xt in step 2 takes
O(k2s). Updating top eigenvalues in step 3-4 takes O(k).
From step 5 to 11, eigenvectors are updated. It takes O(k3)

in to do matrix inversion and multiplication in step 8 and
O(nk) to calculate �uj in step 9. Therefore updating Ut

k

takes O(k4 + nk2)). Thus the overall time complexity for
T iterations takes O(T (k4 + k2(n + s))).
For space cost, it takes O(k) and O(nk) to store �t

k and
Uk

t , O(s) to store �At for each time stamp. In the update
phase from step 2 to 11, it takes O(k2) to store and calculate
Xt , Dt ; O(k) to store v and αj; O(k2) to calculate αj.
However the space cost in update phase can be reused in
each iteration. Therefore the overall space complexity for
T time stamps takes a space of O(T nk + k2 + s). �

4.4. Attribution Analysis

Based on our Trip algorithms, we can effectively track
the corresponding eigen-functions of interest (as defined
in subsection 3.2). In reality, we might also be interested
in understanding the key factors that cause these changes
in dynamic graphs. For example, among all the changed
edges in �A, which edge is most important in causing the
inrease/decrease of the epidemic threshold, or the number
of triangles, etc. The importance of an edge < p, r >∈
�E can be measured as the change it can make on the
corresponding eigen-functions, which can be written as

score(< p, r >) ∼ �f<p,r> = fG∪<p,r> − fG

where f(.) is one of eigen-functions we define in
subsection 3.2.

In Algorithm 3, all removed edges and added edges are
extracted from �A in steps 1 and 2. The impact score of
each removed edge at time t is calculated from step 3 to 5.
Similarly, the score of each added edge is calculated from
step 6 to 8. At the end, top l removed edges and l added
edges are returned as high impact edges at time t .

4.4.1. Complexity Analysis

Assume that the complexity of calculating �f<p,r> is
h(n, k, s), where h is a function of number of nodes n,
number of eigen-pairs k and number of changed edges s.
Then the complexity of calculating the impact scores of all
changed edges (from step 3 to 8) is O(sh(n, k, s)). Given
the impact score of each changed edges, the complexity of
picking out top l edges from removed and added set using
heap structure is O(|removed|logl) + O(|added|logl) =
O(slogl). Therefore the overall complexity for attribution
analysis at time t is O(s(h(n, k, s) + logl)).

4.5. Error Estimation

As described in section 4.1, the core mechanism for both
Trip-Basic and Trip is to incrementally update the eigen-
pairs at each time stamp. With this scheme, the tracking
error of eigen-pairs would accumulate as time goes by.
Therefore, finding a proper time to restart the algorithm
is of key importance to keep the tracking error within a
reasonable range. For simplicity, we only estimate the error
of leading eigenvalue since it is the key part for most of the
eigen-functions. Here we denote err(λt) as the estimated
error on λ introduced at time t . Intuitively, err(λt) would
be strongly correlated to the impact of �At on the original
eigen-space. As the original eigen-space is defined by the

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

8 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

top-k eigenvectors Ut1
k at the first time stamp t1, to measure

the impact of �At on Ut1
k , we can project �At into this

space and take the Frobenius norm of the projection as its
actual impact. Eq. (12) formalizes the impact function of
�At on eigen-space Ut1

k .

err(λt) ∼ impact (�At , Ut1
k) =‖ Ut1

k Ut1
k

′
�At ‖Fro (12)

We denote the summation of the perturbation impacts
from first time stamp t1 to current stamp t as erracc(λ

t).
This number can be viewed as a good approximation of
accumulated tracking error on leading eigenvalue from t1 to
t . In other words, the curve of erracc(λ

t) from t = t1, . . . , t2
would have similar shape with real tracking error curve of
Trip algorithms.

In Algorithm 4, erracc(λ
t1) is initialized as 0 in step 1 and

P is initialized as the projection matrix in step 2. From step
3 to 6, the impact of each perturbation matrix is calculated
and accumulated to erracc(λ

t). In step 7, the estimated error
array erracc(λ

t) for t = t1 + 1, . . . t2 is returned.

4.5.1. Complexity Analysis

The complexity of initializing projection matrix P is
O(n2k). Since �At is often very sparse, the complexity
of calculating impact (�At , Ut1

k) can be reduced to O(ns)

where s is the number of changed edges at current time
stamp. The complexity of accumulating erracc(λ

t) at each
time stamp is O(1). Therefore the overall time complex-
ity for error estimation over time series of length T is
O(n2k + T ns).

5. EXPERIMENTAL EVALUATION

In this section, we evaluate Trip-Basic and Trip on real
datasets. All the experiments are designed to answer the
following two questions

• Effectiveness: how accurate are our algorithms in
tracking eigen-functions, analyzing corresponding
attributions and estimating the tracking errors?

• Efficiency: how fast are the tracking algorithms?

5.1. Experiment Setup

Machine.
We ran our experiment in a machine with two Intel Xeon
3.5GHz processors with 256GB of RAM. Our experiment
is implemented with Matlab using single thread.
Datesets.
AS The first dataset we use for the evaluation is
Autonomous system graph, which is available at http://
snap.stanford.edu/data/. The graph has recorded commu-
nications between routers in the Internet for a long period
of time. Based on the data from [61], we constructed an
undirected dynamic communication graph that contains 100
daily instances with time span from November 8, 1997 to
February 16, 1998. The largest graph among those instances
has 3569 nodes and 12,510 edges. The dataset shows both
the addition and deletion of nodes and edges over time.
Power Grid The second dataset is power grid network. It
is a static, undirected, unweighted network representing the
topology of the Western States Power Grid of the United
States [62], which has 4941 nodes and 6594 edges. To
simulate the evolving process, we randomly add 0.5%m

(m is the number of edges in the graph) new edges to the
graph at each time stamp as perturbation edges. We have
changed different percentages of perturbation edges, and
experimented several runs on each of the settings. As the
results are similar, we only report the results from one run
for brevity.
Airport The third dataset is a static, undirected, un-
weighted airport network, which represents the internal US
air traffic lines between 2649 airports and has 13,106 links
(available at http://www.levmuchnik.net/Content/Networks/
NetworkData.html). Again, similar synthetic evolving pro-
cess was done on this dataset. With similar experiment
results, we only report those from one run of simulation
for brevity.
Evaluation Metrics.
For the quality of eigen-functions tracking, we use the
error rate ε. For eigenvalues, number of triangles and
robustness measurement, their error rate are computed as
ε = |f−f∗|

f∗ , where f and f∗ are the estimated and true eigen-
function values, respectively. For eigenvector, the error is
computed as ε = 1 − uu∗

‖u‖‖u∗‖ , where u is the estimated
eigenvector and u∗ is the corresponding true eigenvector.
For attribution analysis, we use the top-10 precision. For
efficiency, we report the speedup of our algorithms over the

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.levmuchnik.net/Content/Networks/NetworkData.html

Chen and Tong: Eigen-Functions of Dynamic Graphs 9

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time stamp

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

k = 50
(a) (b)

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time stamp

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

k = 100

Trip−Basic

Trip

Fig. 2 The error rate of first eigenvalue approximation (a) k = 50 and (b) k = 100. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time stamp

F
ir
s
t
e
ig

e
n
v
e
c
to

r
e
rr

o
r

ra
te

k = 50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time stamp

F
ir
s
t
e
ig

e
n
v
e
c
to

r
e
rr

o
r

ra
te

k = 100

Trip−Basic

Trip

(a) (b)

Fig. 3 The error rate of first eigenvector approximation (a) k = 50 and (b) k = 100. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

re-computing strategy which computes the corresponding
eigen-pairs from scratch at each time stamp.

5.2. Effectiveness Results

A. Effectiveness of Eigen-Function Tracking. Figs. 2–6
compare the effectiveness of Trip-Basic and Trip using
different number of eigen-pairs (k). We have the following
observations. First, for all of the four eigen-functions, both
algorithms could reach an overall error rate below 20%
at the end of the tracking process. Second, when k is
increased from 50 to 100, Trip-Basic could get a relatively
more stable approximation over the tracking process. Third,
Trip is more stable and overall reaches a smaller error rate

compared with Trip-Basic. For example, as time goes by,
Trip-Basic starts to fluctuate sharply when k = 50 on all
four eigen-functions. Finally, the error on the number of
triangles is relatively higher. This is probably because that
the number of triangles is the sum of cubic eigenvalues, and
small errors on eigenvalues would therefore be magnified
on the final result.

In addition, we also compared our algorithms with three
different eigen-pair estimation methods, which include
(1) “QR Decom”, a QR decomposition-based eigen-pairs
updating method [32]; (2) “SVD delta”, simple SVD
decomposition on �A; and (3) “Nystrom”, a sampling-
based eigen-pair estimation method derived from Nystrom
algorithm [63]. For better effectiveness/efficiency trade-off,

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

10 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time stamp

#
T

ri
a
n
g
le

s
 e

rr
o
r

ra
te

k = 50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time stamp

#
T

ri
a
n
g
le

s
 e

rr
o
r

ra
te

k = 100

Trip−Basic

Trip

(a) (b)

Fig. 4 The error rate of number of triangles approximation (a) k = 50 and (b) k = 100 . [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time stamp

R
o
b
u
s
tn

e
s
s
 s

c
o
re

 e
rr

o
r

ra
te

k = 50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time stamp

R
o
b
u
s
tn

e
s
s
 s

c
o
re

 e
rr

o
r

ra
te

k = 100

Trip−Basic

Trip

(a) (b)

Fig. 5 The error rate of robustness score approximation (a) k = 50 and (b) k = 100. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

we sample 2000 nodes for Nystrom algorithm to calculate
eigen-pairs in our experiment. To better illustrate the results,
we take the error rates of all methods for every 15 days
on the AS data set. As “SVD delta” method causes large
tracking errors compared to other methods, we only report
the error rates from other comparing methods as shown
from Figs 7–11. We can see that the performance of Trip-
Basic and Trip are among the best methods though their
error rates keeps increasing as time accumulates.

B. Effectiveness of Attribution Analysis. For attribution
analysis, we divided the changed edges at each time
stamp into two classes: edges being added and edges
being removed. Also among these two classes, we rank
those edges according to their attribution score defined in

Section 4. As a consequence, the top ranked edges are the
ones that have most impact on the corresponding eigen-
functions. Here we scored and ranked those edges with our
approximated eigen-pairs and true eigen-pairs, respectively,
and then compare the similarity between the two ranks.
The precision of attribution analysis therefore is defined
as the precision at rank 10 in approximated rank list. As
similar results are observed in all three data set, we only
report those on AS dataset as shown in Figs. 12 and 13.
For the analysis on both added edges and removed edges,
Trip overall outperforms Trip-Basic.

C. Effectiveness of Error Estimation. To show the effec-
tiveness of Algorithm 4, we compare the curve shapes
between true errors of Trip and accumulative estimated

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 11

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time stamp

E
ig

e
n

−
g

a
p

 e
rr

o
r

ra
te

k = 50

Trip−Basic

Trip

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time stamp

E
ig

e
n

−
g

a
p

 e
rr

o
r

ra
te

k = 100

Trip−Basic

Trip

(a) (b)

Fig. 6 The error rate of eigen-gap approximation (a) k = 50 and (b) k = 100. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

≥ 0.2

0.18

0.16

0.14

0.12

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.04

0.036

0.032

0.028

0.024

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

0.02

0.016

0.012

0.008

0.004

0

≥ 0.005

Trip-Basic

Trip

QR Decom

Nystrom

0.004

0.003

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

0.002

0.001

0
Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90

(a) (b) (c)

Fig. 7 The error rate of first eigenvalue approximation (a) AS, (b) Power Grid and (c) Airport. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

≥ 0.2

0.18

0.16

0.14

0.12

F
ir
s
t
e
ig

e
n
v
e
c
to

r
e
rr

o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.04

0.036

0.032

0.028

0.024

F
ir
s
t
e
ig

e
n
v
e
c
to

r
e
rr

o
r

ra
te

0.02

0.016

0.012

0.008

0.004

0

≥ 0.001

Trip-Basic
Trip
QR Decom

Nystrom

0.0004

0.0003

F
ir
s
t
e
ig

e
n
v
e
c
to

r
e
rr

o
r

ra
te

0.0002

0.0001

0
Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90

(a) (b) (c)

Fig. 8 The error rate of first eigenvector approximation (a) AS, (b) Power Grid, and (c) Airport. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

12 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

≥ 0.2

0.18

0.16

0.14

0.12

R
o
b
u
s
tn

e
s
s
 s

c
o
re

 e
rr

o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.2

0.18

0.16

0.14

0.12

R
o
b
u
s
tn

e
s
s
 s

c
o
re

 e
rr

o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.002

Trip-Basic

Trip

QR Decom

Nystrom

0.0016

0.0012

R
o
b
u
s
tn

e
s
s
 s

c
o
re

 e
rr

o
r

ra
te

0.0008

0.0004

0
Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90

(a) (b) (c)

Fig. 9 The error rate of robustness score approximation (a) AS, (b) Power Grid, and (c) Airport. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

≥ 0.4

0.36

0.32

0.28

0.24

#
T

ri
a
n
g
le

 e
rr

o
r

ra
te

0.2

0.16

0.12

0.08

0.04

0

≥ 0.4

0.36

0.32

0.28

0.24

#
T

ri
a
n
g
le

 e
rr

o
r

ra
te

0.2

0.16

0.12

0.08

0.04

0

≥ 0.01

Trip-Basic

Trip

QR Decom

Nystrom

0.008

0.006

#
T

ri
a
n
g
le

 e
rr

o
r

ra
te

0.004

0.002

0
Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90

(a) (b) (c)

Fig. 10 The error rate of number of triangles approximation (a) AS, (b) Power Grid, and (c) Airport. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

≥ 0.2

0.18

0.16

0.14

0.12

E
ig

e
n
-g

a
p
 e

rr
o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.2

0.18

0.16

0.14

0.12

E
ig

e
n
-g

a
p
 e

rr
o
r

ra
te

0.1

0.08

0.06

0.04

0.02

0

≥ 0.01

Trip-Basic

Trip

QR Decom

Nystrom

0.008

0.006

E
ig

e
n
-g

a
p
 e

rr
o
r

ra
te

0.004

0.002

0
Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90 Day15 Day30 Day45 Day60 Day75 Day90

(a) (b) (c)

Fig. 11 The error rate of eigen-gap approximation (a) AS, (b) Power Grid, and (c) Airport. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

0.2

0.3

0.4

T
o
p
1
0
 a

d
d
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9
Trip-Basic

Trip

Trip-Basic

Trip

Trip-Basic

Trip

Trip-Basic

Trip

1

0.1

0
5 10 20

Number of eigen-pairs

50 100 200 5 10 20 50 100 200 5 10 20 50 100 200

0.2

0.3

0.4

T
o
p
1
0
 a

d
d
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9

1

0.1

0

Number of eigen-pairs

0.2

0.3

0.4

T
o
p
1
0
 a

d
d
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9

1

0.1

0

Number of eigen-pairs

5 10 20 50 100 200

0.4

0.6

T
o
p
1
0
 a

d
d
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.8

1

1.2

0.2

0

Number of eigen-pairs

(a) (b) (c) (d)

Fig. 12 Average precision over time for the attribution analysis (added edges) (a) First Eigenvalue, (b) Number of Triangles, (c)
Robustness and (d) Eigen-Gap. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 13

0.2

0.3

0.4

T
o
p
1
0
 r

e
m

o
v
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9
Trip-Basic

Trip

Trip-Basic

Trip

Trip-Basic

Trip

Trip-Basic

Trip

1

0.1

0
5 10 20

Number of eigen-pairs

50 100 200 5 10 20 50 100 200 5 10 20 50 100 200

0.2

0.3

0.4

T
o
p
1
0
 r

e
m

o
v
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9

1

0.1

0

Number of eigen-pairs

0.2

0.3

0.4

T
o
p
1
0
 r

e
m

o
v
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.5

0.6

0.7

0.8

0.9

1

0.1

0

Number of eigen-pairs

5 10 20 50 100 200

0.4

0.6

T
o
p
1
0
 r

e
m

o
v
e
d
 e

d
g
e
s
 p

re
c
is

io
n

0.8

1

1.2

0.2

0

Number of eigen-pairs

(a) (b) (c) (d)

Fig. 13 Average precision over time of the attribution analysis (removed edges) (a) First Eigenvalue, (b) Number of Triangles, (c)
Robustness and (d) Eigen-Gap. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time stamp

E
s
ti
m

a
te

d
 e

rr
o

r
(f

ir
s
t

e
ig

e
n

v
a

lu
e

)

Error estimate

Trip

Estimated

Fig. 14 The estimated error of Trip-Basic and Trip on AS data
set. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

errors erracc(λ
t) on AS data set with k = 50. Ideally,

the two curves should overlap with each other when
erracc(λ

t) is properly scaled with some elaborately picked
factor. Fig. 14 shows that the estimated error erracc(λ

t)

can effectively catch sharp error increases in the track-
ing process as marked in red circle. Therefore, it can
be used as a trigger to re-start the tracking process so
that the accumulative error can always be kept within a
low range.

5.3. Efficiency Results

Fig. 15 shows the average speed up with respect to
different k values on AS dataset. We see that both Trip-
Basic and Trip can achieve more than 20× speed up when
k is small. As k increases, the speedup decreases.

To further demonstrate the efficiency of the proposed
algorithms, we also compare their effectiveness/efficiency
trade-offs with those of the alternative methods men-
tioned in the previous subsection. Fig. 16 shows that our

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Number of eigen−pairs k

S
p
e
e
d
 u

p

Trip−Basic

Trip

Fig. 15 The running time speedup of Trip-Basic and Trip wrt
to k. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

algorithms can keep the average error rate very small
on all three data sets while consuming least amount
of time.

6. CONCLUSION

In this paper, we study the problem of eigen-functions
tracking on dynamic graphs. We first introduce different
kinds of eigen-functions and their applications. In order
to efficiently track these functions over time, we propose
Trip-Basic and Trip. In addition, we provide a framework
for attribution analysis on eigen-functions and a method
to effectively estimate tracking errors. Our experiments
show that both Trip-Basic and Trip can effectively and
efficiently track the changes of eigen-pairs, number of
triangles, robustness score and eigen-gap in dynamic
graphs, while Trip is more stable over time. In both cases,
the accumulated error rate inevitably keeps increasing as
time goes by.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

14 Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. (In press)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

>=0.8

Total runtime (s)

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

k = 50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

>=0.8

Total runtime (s)

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

k = 50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

>=0.8

Total runtime (s)

F
ir
s
t
e
ig

e
n
v
a
lu

e
 e

rr
o
r

ra
te

k = 50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

(a) (b) (c)

Fig. 16 The error rate vs. total runtime of first eigenvalue approximation in 100 time stamps (a) AS, (b) Power Grid and (c) Airport.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

ACKNOWLEDGEMENT

This material is supported by the National Science
Foundation under Grant No. IIS1017415, by the Army
Research Laboratory under Cooperative Agreement Num-
ber W911NF-09-2-0053, by Defense Advanced Research
Projects Agency (DARPA) under Contract Number
W911NF-11-C-0200 and W911NF-12-C-0028, by National
Institutes of Health under the grant number R01LM011986,
Region II University Transportation Center under the
project number 49997-33 25.

The content of the information in this document does not
necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

REFERENCES

[1] M. E. J. Newman, The mathematics of networks, New
palgrave Encycl Econ 2 (2008), 1–12.

[2] D. Chakrabarti, Y. Wang, C. Wang, and J. Leskovec, C.
Faloutsos, Epidemic thresholds in real networks, ACM Trans
Inform Syst Secur 10 (4) (2008), 1.

[3] B. Aditya Prakash, D. Chakrabarti, N. C. Valler, M.
Faloutsos, and C. Faloutsos. Threshold conditions for
arbitrary cascade models on arbitrary networks, Knowl Inf
Sys 33 (3) (2012), 549–575.

[4] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epi-
demic spreading in real networks: An eigenvalue viewpoint.
In 22nd International Symposium on Reliable Distributed
Systems, 2003 Proceedings, IEEE, 2003, 25–34.

[5] Stanley Wasserman, Social network analysis: methods and
applications, 8, Cambridge University Press, 1994.

[6] R. Albert, H. Jeong, and A.-L. Barabasi, Error and attack
tolerance of complex networks, Nature 406 (6794) (2000),
378–382.

[7] Hau Chan, Leman Akoglu, and Hanghang Tong. Make it
or break it: manipulating robustness in large networks. In
SDM, SIAM, 2014.

[8] H. Frank, and I. Frisch, Analysis and design of survivable
networks, IEEE Trans Commun Technol 18 (5) (1970),
501–519.

[9] C. E. Tsourakakis. Fast counting of triangles in large
real networks without counting: algorithms and laws. In
Eighth IEEE International Conference on Data Mining,
2008. ICDM’08, IEEE, 2008, 608–617.

[10] J. Wu, B. Mauricio, Y.-J. Tan, and H.-Z. Deng, Natural
connectivity of complex networks, Chin Phys Lett 27 (7)
(2010), 78902.

[11] F. R. K. Chung. Spectral graph theory, Amn Math Soc 92
(1997).

[12] S. Hoory, N. Linial, and A. Wigderson, Expander graphs
and their applications, Bull Am Math Soc 43 (4) (2006),
439–561.

[13] F. Harary and Allen Schwenk, The spectral approach to
determining the number of walks in a graph, Pac J Math
80 (2) (1979), 443–449.

[14] C. E. Tsourakakis, Counting triangles in real-world networks
using projections, Knowl Inf Sys 26 (3) (2011), 501–520.

[15] A. Ganesh, L. Massoulié, and D. Towsley, The effect of
network topology on the spread of epidemics. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies 2 (2005), 1455–1466.

[16] H. Tong, B. Aditya Prakash, C. Tsourakakis, T. Eliassi-Rad,
Christos Faloutsos, and D. H. Chau. On the vulnerability of
large graphs. In 2010 IEEE 10th International Conference
on Data Mining (ICDM), IEEE, 2010, 1091–1096.

[17] H. Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis
Faloutsos, and Christos Faloutsos. Gelling, and melting,
large graphs by edge manipulation. In Proceedings of the
21st ACM International Conference on Information and
Knowledge Management. ACM, 2012, 245–254.

[18] L. T. Le, T. Eliassi-Rad, and H. Tong. Met: a fast algorithm
for minimizing propagation in large graphs with small eigen-
gaps. In SDM, SIAM, 2015.

[19] E. Estrada, Network robustness to targeted attacks. The
interplay of expansibility and degree distribution, Eur Phys
J B 52 (4) (2006), 563–574.

[20] F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos,
Estimating robustness in large social graphs, Know Inf Sys
45 (2015), 645–678.

[21] Hau Chan, Shuchu Han, and Leman Akoglu, Where graph
topology matters: the robust subgraph problem. In SDM.
SIAM, 2015.

[22] M. E. J. Newman, Finding community structure in networks
using the eigenvectors of matrices, Phys Rev E 74 (3)
(2006), 036104.

[23] M. E. J. Newman, Modularity and community structure in
networks, Proc Natl Acad Sci 103 (23) (2006), 8577–8582.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

Chen and Tong: Eigen-Functions of Dynamic Graphs 15

[24] C. Aggarwal, and K. Subbian, Evolutionary network analy-
sis: a survey, ACM Comput Surv 47 (1) (2014), 10.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data
Mining, ACM, 2005, 177–187.

[26] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evo-
lution: densification and shrinking diameters, ACM Trans
Knowl Discov Data 1 (1) (2007), 2.

[27] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos,
Fast monitoring proximity and centrality on time-evolving
bipartite graphs, Stat Anal Data Min 1 (3) 2008, 142–156.

[28] F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos,
Fast robustness estimation in large social graphs: commu-
nities and anomaly detection. In SDM, SIAM 12 (2012),
942–953.

[29] T. Idé, and H. Kashima. Eigenspace-based anomaly detec-
tion in computer systems. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2004, 440–449.

[30] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and
M. Grobelnik, Monitoring network evolution using mdl. In
IEEE 24th International Conference on Data Engineering,
2008. ICDE 2008, IEEE, 2008, 1328–1330.

[31] A. Barron, J. Rissanen, and B. Yu, The minimum description
length principle in coding and modeling, IEEE Trans Inform
Theory 44 (6) (1998), 2743–2760.

[32] L. Li, H. Tong, Y. Xiao, and W. Fan. Cheetah: fast graph
kernel tracking on dynamic graphs. In SDM, SIAM, 2015.

[33] N. Huazhong, X. Wei, C. Yun, G. Yihong, and T. S. Huang,
Incremental spectral clustering by efficiently updating the
eigen-system, Pattern Recogn 43 (1) (2010), 113–127.

[34] R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the
world wide web, Nature 401 (1999), 130–131.

[35] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Graph
structure in the web: experiments and models. In WWW
Conference, 2000.

[36] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law
relationships of the internet topology, In ACM SIGCOMM
Computer Communication Review, 29 1999, 251–262.

[37] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G.
Agrawal. Discovering frequent topological structures from
graph datasets. In KDD, 2005, 606–611.

[38] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D.
Chklovskii, and U. Alon, Network motifs: simple building
blocks of complex networks, Science 298 (5594) (2002),
824–827.

[39] D. Xin, J. Han, X. Yan, and H. Cheng, Mining compressed
frequent-pattern sets. In VLDB, 2005, 709–720.

[40] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X.
Lan. Group formation in large social networks: membership,
growth, and evolution. In KDD, 2006, 44–54.

[41] G. Karypis and V. Kumar. Multilevel -way hypergraph
partitioning. In DAC, 1999, 343–348.

[42] F. Geerts, H. Mannila, and E. Terzi, Relational link-based
ranking. In VLDB 2004, 552–563.

[43] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, 2006, 613–622.

[44] H. Tong, J. He, M. Li, W.-Y. Ma, H.-J. Zhang, and C.
Zhang. Manifold-ranking-based keyword propagation for
image retrieval. EURASIP J Appl Signal Process 2006,
79412. doi:10.1155/ASP/2006/79412.

[45] A. S. Maiya, Sampling and inference in complex networks,
PhD thesis, Stanford University, 2011.

[46] A. S. Maiya and T. Y. Berger-Wolf, Benefits of bias: towards
better characterization of network sampling. In Proceedings
of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2011,
105–113.

[47] D. Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In Proceedings
of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, Washington,
DC, USA 2003, 137–146.

[48] N. C. Valler. Spreading Processes on Networks Theory and
Applications. PhD thesis, University of California, 2012.

[49] X. Wei, N. C. Valler, B. Aditya Prakash, I. Neamtiu, M.
Faloutsos, and C. Faloutsos, Competing memes propagation
on networks: a network science perspective, IEEE J Selected
Areas in Commun 31 (6) (2013), 1049–1060.

[50] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.
Havlin, Catastrophic cascade of failures in interdependent
networks, Nature 464 (7291) (2010), 1025–1028.

[51] A. Vespignani, Complex networks: the fragility of interde-
pendency. Nature 464 (7291) 2010, 984–985.

[52] J. Gao, S. V Buldyrev, H. E. Stanley, and S. Havlin,
Networks formed from interdependent networks, Nat Phys
8 (1) (2012), 40–48.

[53] R. Parshani, S. V. Buldyrev, and S. Havlin, Interdependent
networks: reducing the coupling strength leads to a change
from a first to second order percolation transition, Phys Rev
Lett 105 (4) (2010), 048701.

[54] A. Sen, A. Mazumder, J. Banerjee, A. Das, and R.
Compton, Multi-layered network using a new model of
interdependency, arXiv preprint arXiv 1401.1783, 2014.

[55] J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stan-
ley, Cascade of failures in coupled network systems
with multiple support-dependent relations. arXiv preprint
arXiv:1011.0234, 2010.

[56] C. Chen, J. He, N. Bliss, and H. Tong. On the connectivity
of multi-layered networks: models, measures and optimal
control. In ICDM. IEEE, 2015.

[57] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
Robustness of a network of networks, Phys Rev Lett 107
(19) (2011), 195701.

[58] B. Aditya Prakash, A. Sridharan, M. Seshadri, S. Machiraju,
and C. Faloutsos. Eigenspokes: surprising patterns and
scalable community chipping in large graphs. In Advances
in Knowledge Discovery and Data Mining, 14th Pacific-
Asia Conference, PAKDD 2010, Springer Berlin Heidelberg,
Hyderabad, India, June 21–24, 2010. Proceedings. Part II,
2010, 435–448.

[59] V. V. Williams, Breaking the coppersmith-winograd barrier.
[60] G. W. Stewart, and S. Ji-Guang, Matrix Perturbation Theory,

Academic Press, 1990.
[61] University of Oregon Route View Project. Online data and

reports. http://www.routeviews.org.
[62] J. Duncan, Watts and Steven H Strogatz. Collective

dynamics of small-world networks, Nature 393 (6684)
(1998), 440–442.

[63] P. Drineas, and M. W. Mahoney, On the nyström method
for approximating a gram matrix for improved kernel-based
learning, J Mach Learn Res 6 (2005), 2153–2175.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam

http://www.routeviews.org

