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1 Problem Description
Networks naturally appear in many high-impact applications, ranging from epi-
demic study, social network mining to infrastructure analysis. As the world is
becoming increasingly connected and coupled, nodes from different application
domains tend to be inter-dependent on each other, forming the so-called multi-
layered networks [3]. One classic example of multi-layered network is collab-
oration platform as shown in Fig. 1(a), where team collaboration network is
supported by the social network between employees, which is backed by the
information network among knowledge bases. Compared to single-layered net-
works, multi-layered networks are more vulnerable to external attacks since a
small disturbance in one layer may cause catastrophic failures of the entire sys-
tem through dependency links. By combining the dependency links with single
networks from different domains, we aim to derive a generic analytic framework
that can be applied to both single-layered networks and multi-layered networks.

(a) Multi-layered collaboration network (b) Overview of the problem

Fig. 1: Example of multi-layered network and problem overview.

Among the various network properties in the literature, network connectivity
is the one that shows close correlation to network robustness and dissemination
ability. Some prevalent connectivity measures include natural connectivity [8],
epidemic threshold [1], etc. In real applications, it is of key importance to opti-
mize (maximize/minimize) the connectivity of the network by manipulating its
underlying structure within certain budget. As the connectivity measures varies
from one to the other, different optimization algorithms are designed to optimize
each of them (e.g. [5] for epidemic threshold and [2] for natural connectivity).
Although there is no panacea for the various connectivity optimization problems,
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those specialized optimization methods still share many properties in common,
which inspires us to seek for a general optimization framework that could fit into
a wide range of connectivity measures.

On the other hand, most of the above-mentioned works assume that the net-
work structure is accurate and static, which is not realistic in many applications.
The observed links in the network may be mistakenly placed due to noise, while
true connections might be missed due to incomplete data sources. To address
this problem, it is important to infer a more accurate network structure from
the observed links. Furthermore, as the network is evolving over time, its key
properties would vary from time to time. To keep track of those changing prop-
erties in a timely manner, it is necessary to have a fast inference algorithm to
provide good estimations on the corresponding properties.

To summarize, the main problems studied in our work are focused on mea-
sures, inference and optimization of network connectivity in complex networks.
The relationship between those problems are shown in Fig. 1(b). Generally
speaking, a well defined connectivity measure serves as the objective to inference
and optimization tasks; The inference results in turn provide a good approxima-
tion on the connectivity measure and improve the accuracy of the input network
for optimization tasks; Last, the optimization methods are used to find optimal
strategies to manipulate the network structure, which can effectively change the
connectivity of the network.

2 Methodologies

In this section, we present our approaches for the three problems.
Measures. We unify a family of prevalent network connectivity measures (SUB-
LINE) by viewing the connectivity of the entire network as an aggregation over
the connectivity scores of its sub-networks (e.g. subgraphs, motifs) [3]. Based on
this definition, we find that a variety of connectivity measures can be viewed as
instances of the SUBLINE model by carefully tuning the model coefficients (e.g.
epidemic threshold, natural connectivity, etc.).
Inference. To infer a complete set of dependency links in multi-layered net-
works, we propose a collective collaborative filtering based method that could
effectively identify missing links across the layers. We have compared our algo-
rithm with a wide range of baseline methods under various evaluation metrics
(MPR, HLU, MAP and AUC) [6]. Experiment results show that our algorithm
outperforms all other baselines in all the metrics. On the other hand, in dynamic
network settings, we derive an efficient scheme to approximate the algebraic
connectivity measures by leveraging matrix perturbation theory [4]. Experiment
results demonstrate that our methods can effectively keep track of a wide range
of connectivity measures with up to 20× speedup in a fairly long period of time.
Optimization. Based on the definition of SUBLINE model, we find that for any
SUBLINE connectivity measures, the corresponding connectivity control prob-
lem enjoys the diminishing returns property in both single-layered networks and
multi-layered networks, which naturally lends itself to a family of provable near-
optimal control algorithms with linear complexity [3]. We have compared our
optimization algorithms with other heuristic baseline methods on their abilities
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of minimizing network connectivity measures under certain budget. Experiment
results show that our algorithm outperforms all other baselines in all optimiza-
tion scenarios.

The effectiveness of our proposed methods is validated on various datasets
from three different domains, ranging from biology, infrastructure to social col-
laboration. In the biology domain, we have a three-layered network system that
depicts the inter-dependency between proteins, genes and drugs [7]. While in the
infrastructure domain, we construct a three-layered infrastructure system that
shows the interactions between power grid, router network and transportation
network [6]. In social collaboration domain, we build a three-layered academia
collaboration platform from Aminer dataset [9], which reveals the connections
between researchers, papers and conference venues.

3 Future Work
Our future research aims to dig deeper into the three problems on network
connectivity optimization. From the connectivity measures aspect, we want to
explore some local connectivity measures can be used to evaluate the connec-
tivity based centrality for individual node or a small group of nodes; For the
inference problem, we would like to derive a more general network completion
method that can jointly identify both within-layer missing links and cross-layer
missing dependencies via network embedding methods. Last, for the connectiv-
ity optimization part, our goal is to design a more effective optimization scheme
that can further improve the lower bound of current approximation algorithms.
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search database issue and molecular biology database collection. Nucleic acids re-
search 43(D1), D1–D5 (2015)

8. Jun, W., Barahona, M., Yue-Jin, T., Hong-Zhong, D.: Natural connectivity of com-
plex networks. Chinese physics letters 27(7), 078902 (2010)

9. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 990–998.
ACM (2008)


