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1. INTRODUCTION

Controlling the dissemination of entities on large networks is a critical problem in
various disciplines, such as epidemiology, computer security, marketing, and so on.
Depending on the applications, the entity could be virus, malware, or a new product
to promote in the market. Various factors would affect the dissemination process,
including the intrinsic properties of the entity and the topology of the network that the
entity spreads on. In our work, we assume that the properties of the entity cannot be
altered and focus on the topology of the graph.

For information dissemination on real graphs, a major, recent finding is that, for
a family of dissemination process, the largest (in module) eigenvalue of the adjacency
matrix or an appropriately defined system matrix is the only parameter that determines
the tipping point of dissemination process (i.e., whether or not the dissemination will
become an epidemic) [Prakash et al. 2012a]. Based on this finding, an optimal strategy
to affect the outcome of the dissemination process should be as follows: change the
graph structure (deleting/adding nodes or edges) so that the corresponding leading
eigenvalue is minimized/maximized. Most previous work has studied the containment
of a dissemination at the level of nodes: we can delete or inoculate nodes. At the
node level, the problem of enabling a dissemination has been studied much less, since
the idea of adding nodes in a network is less intuitive compared to adding edges. In
more detail, there have been several works that attempt to identify which nodes we
should remove or inoculate for several different propagation models, for both static
[Briesemeister et al. 2003] and dynamic topologies [Prakash et al. 2010]. In addition,
there have been several studies on fundamental properties of epidemic propagation for
various epidemic models and topologies [Wang et al. 2003; Prakash et al. 2012a; Valler
et al. 2011]. In Section 6, we review previous literature in more detail.

Despite its rationality, node-level manipulations might not be desirable in some
applications. Consider the case of stopping malware in the network, it is not desirable
to simply shut down some user accounts to contain the dissemination, since there
may be some legitimate accounts among them as well. To address this issue, we shift
the problem to edge-level manipulation, which breaks the task into NetMelt and NetGel
problem. In NetMelt problem, we want to contain the dissemination by removing a given
number of edges. For example, when a malware has been detected in the network, we
may need to shut down some critical connections between routers to effectively contain
its spread, which is a milder strategy than node deletion (e.g., shutting down the
routers). In NetGel problem, on the contrary, we want to promote the dissemination
by adding a given number of edges. Consider the merchants on Facebook or Twitter
who want to promote their new products, they could elaborately choose a set of users
to connect with and spread their promotion information via those links.

Both NetMelt and NetGel problems are challenging. For the NetMelt problem, most
of the existing methods operate on the node-level, e.g., deleting a subset of the nodes
from the graph to minimize the infected population from a propagating virus. In the
above social spam example, this means that we have to shutdown some legitimate user
accounts. Can we avoid this by operating on a finer granularity, that is, only deleting
a few edges between users to slow down the social spam spreading? For the NetGel
problem, things are even more challenging because of its high intrinsic time complexity.
Let n be the number of the nodes in the graph. There are almost n2 non-existing edges
since many real graphs are very sparse. In other words, even if we only want to add one
single new edge into the graph, the solution space is O(n2). This complexity “explodes”
if we aim to add multiple new edges collectively, where the solution space becomes
exponential.

The major contribution of this paper can be summarized as follows. First (Algo-
rithms.), we propose effective and scalable algorithms and their variants to optimize
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Table I. Symbols

Symbol Definition and Description

A, B, . . . matrices (bold upper-case)
A(i, j) the element at the ith row and the jth column of A
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of matrix A
a, b, . . . vectors
I,J , . . . sets (calligraphic)
λ the largest (in module) eigenvalue of A
u, v the n × 1 left eigenvector and right eigenvector associated with λ.
n the number of the nodes in the graph
m the number of the edges in the graph
k the budget (i.e., the number of deleted or added edges)

the leading eigenvalue, the key graph parameter that controls the information dissem-
ination processes for both NetMelt and NetGel, respectively. Second (Proofs and Analy-
sis.), we show and prove the hardness of the problem; the accuracy and the complexity
of our methods, and the equivalence between different strategies. Third (Experimental
Evaluations.), we evaluate our approaches on real large graphs and show their effec-
tiveness and scalability. Our evaluations on real large graphs show that our methods
(a) are much more effective than the alternative choices in affecting the outcome of the
dissemination processes; (b) enable a more effective way to affect the outcome of the
information dissemination process by operating at the edge level; and (c) scale to large
graphs.

The rest of the paper is organized as follows. We introduce notation and formal defini-
tion of NetMelt and NetGel problems in Section 2. We present and analyze the proposed
algorithms in Section 3 and Section 4, respectively. The experimental evaluations are
provided in Section 5. We review the related work in Section 6 and conclude the work
in Section 7.

2. PROBLEM DEFINITIONS

Table I lists the main symbols used throughout the paper. We consider directed, ir-
reducible unipartite graphs. For ease of presentation, we discuss the unweighted
graph scenario although the algorithms we propose can be naturally generalized to
the weighted case. We represent a graph by its adjacency matrix. Following the stan-
dard notation, we use bold upper-case for matrices (e.g., A), bold lower-case for vectors
(e.g., a), and calligraphic fonts for sets (e.g., I). We denote the transpose with a prime
(i.e., A′ is the transpose of A). Also, we represent the elements in a matrix using a
convention similar to Matlab, e.g., A(i, j) is the element at the ith row and jth column
of the matrix A, and A(:, j) is the jth column of A, and so on.

When we discuss the relationship between the two different strategies (node deletion
vs. edge deletion) for the NetMelt problem, it is helpful to introduce the concept of
line graph, where the nodes represent the edges in the original graph. Formally, each
edge in the original graph A becomes a node in the line graph L(A); and there is an
edge from one node to the other in the line graph if the target of the former edge is the
same as the source of the latter edge in the original graph A. It is formally defined as
follows:

Definition 1 (Line Graph). Given a directed graph A, its directed line graph L(A)
is a graph such that each node of L(A) represents an edge of A, and there is an edge
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from a node e1 to e2 in L(A) iff for the corresponding edges 〈i1, j1〉 and 〈i2, j2〉 are in A,
j1 = i2.

With the notation of the line graph L(A), we have two equivalent ways to represent
an edge. Let ex (ex = 1, . . . , m) be the index of the nodes (i.e., the edges in A) in the
line graph. We can also represent the edge ex by the pair of its source and target nodes
in the original graph A: 〈ix, jx〉, i.e., the edge ex starts with the node ix and ends at
node jx.

In order to design an effective strategy to optimize the graph structure to affect the
outcome of an information dissemination process, we need to answer the following three
questions: (1) (Key graph parameters/metrics) What are key graph metrics/parameters
that determine/control the dissemination process? (2) (Graph operations) What types
of graph operations (e.g., deleting nodes/edges, adding edges, etc) are we allowed to
change the graph structure? (3) (Affecting algorithms) For a given graph operation,
how can we design effective, scalable algorithms to optimize the corresponding key
graph parameters?

For information dissemination on real graphs, a major finding [Wang et al. 2003;
Prakash et al. 2012a] is that, for a large family of dissemination processes, the largest
(in module) eigenvalue λ of the adjacency matrix A or an appropriately defined system
matrix is the only graph parameter that determines the tipping point of the dissem-
ination process, i.e., whether or not the dissemination will become an epidemic (see
Section 6 for a review of related work). In principle, this gives a clear guidance on the
algorithmic side, that is, an ideal, optimal strategy to affect the outcome of the infor-
mation dissemination process should change the graph structure so that the leading
eigenvalue λ is minimized or maximized.

Based on this observation, now we can transform the original problem of affecting
the dissemination process to the eigenvalue optimization problem, that is,

(1) minimize the leading eigenvalue λ for NetMelt;
(2) maximize the leading eigenvalue λ for NetGel.

In this paper, we focus on operating on the edge-level to design affecting algorithms.
With the above notation, our problems can be formally defined as the following two
sub-problems:

PROBLEM 1. NetMelt (Edge Deletion)

Given. A large n × n graph A and an integer (budget) k;
Output. A set of k edges from A whose deletion from A creates the largest decrease of

the leading eigenvalue of A.

PROBLEM 2. NetGel (Edge Addition)

Given. A large n × n graph A and an integer (budget) k;
Find. A set of k non-existing edges of A whose addition to A creates the largest

increase of the leading eigenvalue of A.

As we will show soon, both problems are combinatorial.

3. PROPOSED ALGORITHM FOR NETMELT

In this section, we address the NetMelt problem (Prob. 1), that is, to delete k edges from
the original graph A so that its leading eigenvalue λ will decrease as much as possible.
We first study the relationship between two different strategies (edge deletion vs. node
deletion), and then present our algorithm, followed by the analysis of its effectiveness
as well as efficiency.
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3.1. Edge Deletion vs. Node Deletion

Roughly speaking, in the NetMelt Problem (Edge Deletion), we want to find a set of
k “important” edges from the graph A to delete. With the notation of the line graph
L(A), intuitively, such “important” edges in A might become “important” nodes in the
line graph L(A). In this section, we briefly present the relationship between these two
strategies (node deletion vs. edge deletion).

Our main result is summarized in Lemma 3.1, which says that the eigenvalues of
the original graph A are also the eigenvalues of its line graph L(A).

LEMMA 3.1. Line Graph Spectrum. Let λ be an eigenvalue of the graph A. Then, λ is
also the eigenvalue of the line graph L(A).

PROOF. See the Appendix.
By Lemma 3.1, it seems that edge deletion (Prob. 1) can be transformed to the

node deletion problem on the line graph–that is, select a subset of k nodes from the
line graph L(A) whose deletion creates the largest decrease in terms of the leading
eigenvalue of L(A). However, by the following lemma, the node deletion problem itself
is still a challenging task.

LEMMA 3.2. Hardness of Node Deletion. It is NP-Complete to find a set of k nodes
from a graph A, whose deletion will create the largest decrease of the largest eigenvalue
of the graph A.

PROOF. The proof can be done by the reduction from the independent node set problem,
which is known to be NP-Complete [Karp 1972]. See the Appendix.

That said, we seek an effective algorithm that directly solves the NetMelt problem
next.

3.2. Proposed K-EDGEDELETION Algorithm

The key to solving Problem 1 (NetMelt) is to quantify the impact of deleting a set
of edges in terms of the leading eigenvalue λ. The naive way is to recompute the
leading eigenvalue λ after deleting the corresponding set of edges – the smaller the
new eigenvalue, the better the subset of the edges. But it is computationally infeasible
for large graphs since it takes O(m) time for each of the

(m
k

)
possible sets, as in general,

the impact for a given set of the edges (in terms of decreasing the leading eigenvalue
λ) is not equal to the summation of the impact of deleting each individual edge.

Let u and v be the leading left eigenvector and right eigenvector of the graph
A, respectively. Intuitively, the left eigen-score u(i) and the right eigen-score v( j)
(i, j = 1, . . . , n) provide some importance measure for the corresponding nodes i and
j. The core idea of the proposed K-EDGEDELETION algorithm is to quantify the impact
of each edge by the corresponding left and right eigen-scores independently (line 9).
Our upcoming analysis in the next subsection shows that this strategy (1) leads to a
good approximation of the actual impact w.r.t decreasing the leading eigenvalue; and
(2) naturally de-couples the dependence among the different edges. As a result, we can
avoid the combinatorial enumeration in Problem 1 by picking the top-k edges with the
highest individual impact scores (line 9).

According to the Perron–Frobenius Theorem [Golub and Loan 1996], the entries in
the leading eigenvector share the same sign. In practice, the actual sign for the leading
eigenvector could be negative for the negative leading eigenvalue. Thus, we introduce
lines 2–7 in Algorithm 1 to ensure that all the eigen-scores (i.e., u(i), v( j)(i, j = 1, . . . , n))
are non-negative. From line 8 to line 10, the score of each edge in the graph is calculated
with respect to the eigen-scores of its two end nodes. Finally in line 11, the top k edges
with the highest scores are returned.
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ALGORITHM 1: K-EDGEDELETION

Input: the adjacency matrix A and the budget k
Output: k edges
1: compute the leading eigenvalue λ of A; let u and v be the corresponding left and right

eigenvectors, respectively;
2: if mini=1,...,nu(i) < 0 then
3: assign u ← −u
4: end if
5: if mini=1,...,nv(i) < 0 then
6: assign v ← −v
7: end if
8: for each edge ex : 〈ix, jx〉 ex = 1, . . . , m; ix, jx = 1, . . . , n do
9: score(ex) = u(ix)v( jx);
10: end for
11: return top-k edges with the highest score(ex)

3.3. Proofs and Analysis

Here, we analyze the accuracy and the efficiency of the proposed K-EDGEDELETION

algorithm.
The accuracy of the proposed K-EDGEDELETION is summarized in Lemma 3.3. Accord-

ing to Lemma 3.3, the first-order matrix perturbation theory, together with the fact that
many real graphs have large eigen-gap, provides a good approximation to the impact of
a set of edges in terms of decreasing the leading eigenvalue. What is more important,
with such an approximation, the impact of the different edges are now de-coupled from
each other. Specifically, by defining the score of each edge e : 〈i, j〉 in the original graph
as score(e) = u(i)v( j), the decrease of the leading eigenvalue caused by edge deletion
can be approximated by the summation over the scores of all the deleted edges. There-
fore, we can avoid the combinatorial enumeration of Problem 1 by simply returning
the top-k edges with the highest individual impact scores (line 9 in Algorithm 1).

Notice that by Lemma 3.3, there is an O(k) gap between the approximate and the
actual impact of a set of edges in terms of decreasing the leading eigenvalue. Our
experimental evaluations show that the correlation between the approximate and the
actual impact is very high (See Section 5 for details), indicating that it indeed provides
a good approximation for the actual decrease of the leading eigenvalue.

LEMMA 3.1. Let λ̂ be the (exact) first eigenvalue of Â, where Â is the perturbed version
of A by removing all of its edges indexed by the set S. Let δ = λ − λ2 be the eigen-gap of
the matrix A where λ2 is the second eigenvalue of A, and c = 1/(u′v). If λ is the simple
first eigenvalue of A, and δ ≥ 2

√
k, then λ − λ̂ = c

∑
ex∈S u(ix)v( jx) + O(k).

PROOF. Let λi(i = 1, . . . , n) be the ordered eigenvalues of A (i.e., |λ| = |λ1| ≥ |λ2| . . . ≥
|λn|). Let λ̃i(i = 1, . . . , n) be the corresponding eigenvalues of Â. Notice that we omitted
the subscripts for the leading eigenvalues (i.e., λ1 = λ, and λ̃1 = λ̃).

Let Â = A + E. We have ‖E‖Fro = √
k.

According to the first-order matrix perturbation theory (p. 183 [Stewart and Sun
1990]), we have

λ̃1 = λ1 + u′Ev
u′v

+ O(‖E‖2)

= λ1 − c
∑
ex∈S

u(ix)v( jx) + O(k). (1)
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Next, we will show that λ̃1 is indeed the leading eigenvalue of Â. To this end, again
by the matrix perturbation theory (p. 203 [Stewart and Sun 1990]), we have

λ̃1 ≥ λ1 − ‖E‖2 ≥ λ1 − ‖E‖Fro ≥ λ1 −
√

k

λ̃i ≤ λi + ‖E‖2 ≤ λi + ‖E‖Fro ≤ λi +
√

k(i ≥ 2). (2)

Since δ = λ1 − λ2 ≥ 2
√

k, we have λ̃1 ≥ λ̃i(i = 2, . . . , n). In other words, we have that
λ̃1 = λ̂ is the leading eigenvalue of Â. Therefore,

λ − λ̂ = c
∑
ex∈S

u(ix)v( jx) + O(k) (3)

which completes the proof.
The efficiency of the proposed K-EDGEDELETION is summarized in the following

lemma, which says that with a fixed budget k, K-EDGEDELETION is linear w.r.t the size
of the graph for both time and space cost.

LEMMA 3.2 (EFFICIENCY OF K-EDGEDELETION). The time cost of Algorithm 1 is O(mk+n).
The space cost of Algorithm 1 is O(n + m+ k).

PROOF. Using the power method, line 1 takes O(m) time. Lines 2–7 take O(n) time.
Lines 8–10 take O(m) time. Line 11 takes O(mk) time. Therefore, the overall time
complexity of Algorithm 1 is O(mk + n), which completes the proof of the time cost.

We need O(m) to store the original graph A. It takes O(n) and O(1) to store the
eigenvectors and eigenvalue, respectively. We need additional O(m) to store the scores
(Line 9) for all the edges. Finally, it takes O(k) for the selected k edges. Therefore, the
overall space complexity of Algorithm 1 is O(m+ n + k), which completes the proof of
the space cost.

3.4. Variants

A. NetMelt with Restart Strategy
The restart strategy for NetMelt tends to dynamically delete the edges from the

graph and then update the graph to make it ready for next batch of deletion. Given
the number of edges k to be deleted from the graph, we would first break them into
several batches, each of size b. The restart strategy will employ the NetMelt algorithm
to delete b edges from current graph at each round and then update the graph until k
edges are picked out. The detailed algorithm is shown in Algorithm 2.

ALGORITHM 2: K-EDGEDELETION with Restart
Input: the adjacency matrix A, the budget k and batch size b
Output: k edges
1: compute the number of restarting times t = �k/b�
2: initialize the edge set S to empty
3: for round 1 to t do
4: S ′ = K-EDGEDELETION(A,b)
5: S = S

⋃
S ′

6: update graph A by delete the edges in S ′

7: end for
8: if k > tb then
9: S ′ = K-EDGEDELETION(A,k − tb)
10: S = S

⋃
S ′

11: end if
12: return S
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B. NetMelt on Weighted Graph
On weighted graph, the matrix’s leading eigenvalue change can be estimated with

the same approach as in Lemma 3.3.

λ − λ̂ = c
∑
ex∈S

u(ix)v( jx)w(ix, jx) + O(k). (4)

According to Equation (4), the score of each edge can be calculated as score(ex) =
u(ix)v( jx)w(ix, jx).

C. NetMelt on Undirected Graph
In undirected graph, the left and right eigenvectors are the same. Suppose that we

only calculate the right eigenvector v, then the leading eigenvalue change function can
be modified as

λ − λ̂ = c
∑
ex∈S

v(ix)v( jx) + O(k). (5)

According to Equation (5), the score of each edge can be calculated as score(ex) =
v(ix)v( jx).

4. PROPOSED ALGORITHM FOR NETGEL

In this section, we address the NetGel problem (Problem 2), where we want to add
a set of new links into the graph A so that its leading eigenvalue λ will increase as
much as possible. We first present the proposed K-EDGEADDITION algorithm, and then
analyze its accuracy as well as efficiency. As most of the real world graphs are sparse,
the solution space of NetGel problem is much larger than the one of NetMelt problem,
which implies that solving NetGel would be harder than solving NetMelt.

4.1. Proposed K-EDGEADDITION Algorithm

Let T be a set of non-existing edges in A, that is, for each ex : 〈ix, jx〉 ∈ T , we have
A(ix, jx) = 0. Let λ̂ be the leading eigenvalue of the new adjacency matrix Â by intro-
ducing the new edges indexed by the set T . By the similar procedure as in the proof
of Lemma 3.3, we can show that the impact of the new set of edges T in terms of
increasing the leading eigenvalue λ̂ − λ can be approximated as

λ̂ − λ ≈
∑
ex∈T

u(ix)v( jx). (6)

For any non-existing edge e : 〈i, j〉 in the original graph A where A(i, j) = 0, we define
its score as score(e) = u(i)v( j). Equation (6) indicates that the increase of the leading
eigenvalue caused by edge addition can be approximated by the summation over scores
of all the previous non-existing added edges. Therefore, it seems that we could use
a similar procedure as K-EDGEDELETION to solve the NetGel problem (referred to as
“Naive-Add”): for each non-existing edge ex : 〈ix, jx〉, calculate its score as score(ex) =
u(ix)v( jx); and pick top-k non-existing edges with the highest scores.

However, many real graphs are very sparse, i.e., m << n2. Therefore, we have O(n2 −
m) ≈ O(n2) possible non-existing edges. In other words, Naive-Add requires quasi-
quadratic time w.r.t the number of the nodes (n) in the graph, which does not scale to
large graphs.

To address this issue, we propose an efficient algorithm, which is summarized in
Algorithm 3. The core idea of K-EDGEADDITION is to prune a large portion of the non-
existing edge pairs based on their left and right eigen-scores. As in Algorithm 1, we
take the same procedure to make sure that the left and right eigenvectors (u, v) are
non-negative. We omit these steps in Algorithm 3 for brevity.
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ALGORITHM 3: K-EDGEADDITION

Input: the adjacency matrix A and the budget k
Output: k non-existing edges
1: compute the left (u) and right (v) eigenvectors of A that correspond to the leading

eigenvalue (u, v ≥ 0);
2: calculate the maximum in-degree (din) and out-degree (dout) of A, respectively;
3: find the subset of k + din nodes with the highest left eigen-scores u(i). Index them by I;
4: find the subset of k + dout nodes with the highest right eigen-scores v( j). Index them by J ;
5: for each edge ex : 〈ix, jx〉 ix ∈ I, jx ∈ J , A(ix, jx) = 0 do
6: score(ex) = u(ix)v( jx). Index them by P;
7: end for
8: return top-k non-existing edges with the highest scores among P.

4.2. Proofs and Analysis

Here, we analyze the accuracy and efficiency of the proposed K-EDGEADDITION.
The accuracy of the proposed K-EDGEADDITION is summarized in Lemma 4.1, which

says that K-EDGEADDITION selects the same set of edges as Naive-Add.

LEMMA 4.1 (EFFECTIVENESS OF K-EDGEADDITION). Algorithm 3 outputs the same set of
non-existing edges as Naive-Add.

PROOF. Since the maximum in-degree of graph A is din and the size of source node set
I is k+ din, then for each possible target node j ∈ J , the maximum number of existing
edges directing to j from I would be din. Therefore, there are at least k non-existing
edges starting from I to j. Given any target node j in the graph, for any source node i′,
whose corresponding u(i′) value is not among the top k + din values of left eigenvector
u, we have score(〈i′, j〉) = u(i′)v( j). For each node i ∈ I, u(i) ≥ u(i′). Therefore we
have score(〈i, j〉)≥score(〈i′, j〉), which indicates that there are at least k non-existing
edges(starting from I ending with J ) whose score is greater or equal to score(〈i′, j〉).
Cases are similar for each target node j ′ whose corresponding v( j ′) value is not among
the top k + dout values of right eigenvector v. Conclude from all above, we can see that
the top k scored non-existing edges in A are the same with top k scored non-existing
edges start from I and end with J .

The efficiency of the proposed K-EDGEADDITION is summarized in the following lemma:

LEMMA 4.2 (EFFICIENCY OF K-EDGEADDITION). The time cost of Algorithm 3 is O(m +
nt + kt2). The space cost of Algorithm 3 is O(n + m+ t2), where t = max(k, din, dout).

PROOF. Using the power method, line 1 takes O(m) time. Line 2 takes O(m+ n) time.
Lines 3–4 take O(n(din + k)) and O(n(dout + k)) time, respectively, both of which can
be written as O(nt). Lines 5–7 take O((k + din)(k + dout)) = O(t2) time. Line 8 takes
O((k+ din)(k+ dout)k) = O(kt2). Therefore, the overall time cost is O(m+ nt + kt2), which
completes the proof of the time complexity.

We need O(m) to store the original graph A. It takes O(n) to store the eigenvectors u
and v. Line 2 takes additional O(n+ 1) space. Lines 3–4 take O(din + k) and O(dout + k)
space, respectively, both of which can be simplified as O(t). Line 5–7 take at most
O((k+din)(k+dout)) = O(t2) space. Line 9 takes O(k) space. Therefore, the overall space
cost (by omitting the smaller terms) is O(m+ n+ kt2), which completes the proof of the
space complexity.

4.3. K-EDGEADDITION+
The variants in Section 3.4 can also be applied to NetGel problem with the same
efficiency. Notice that in K-EDGEADDITION, there is a quadratic term O(t2) in its time
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complexity function. In this section, we propose K-EDGEADDITION+ to further improve
the efficiency of K-EDGEADDITION, especially in sparse graphs. By observing the product
matrix P of sorted eigenvector v and u, we noticed that there is at most one candidate
in each row and column as maximum score edge among the rest of non-existing edges at
any time. Therefore, instead of calculating all pairs of product between u(I) and v(J ),
and then sorting the product array and taking the top k edges as result, we examine the
product scores with certain order in P, as shown in Algorithm 5, and pick out the edge
with largest product among all the current non-existing edges at each round for k times
to eliminate unnecessary calculation of pair product and array sorting operations. As
shown in Algorithm 4, the left and right eigenvectors of A are calculated in line 1. With
the maximum in-degree din and out-degree dout from line 2, we identify k + din nodes
with the highest left eigen-scores sorted in the descending order and index them by
I in line 3. Similarly, we identify the top k + dout nodes with the highest right eigen-
scores indexed by J in line 4. In lines 6–8, we first examine whether the edge with the
highest score is a non-existing edge or not. If it is, we add it to the result set R. From
line 9 to 15, we gradually expand the candidate edge set based on the indices of end
nodes of currently picked edge using the CandidateExtenstion function and store those
candidate edges in max-heap H, as shown in line 11 and line 14. In lines 12 and 13, we
pick the edge with the highest score from max-heap H and put it into our result set R.
Last, we return the result set R in line 16.

ALGORITHM 4: K-EDGEADDITION+
Input: the adjacency matrix A and the budget k
Output: k non-existing edges
1: compute the left (u) and right (v) eigenvectors of A that correspond to the leading

eigenvalue (u, v ≥ 0);
2: calculate the maximum in-degree (din) and out-degree (dout) of A, respectively;
3: find the subset of k + din nodes with the highest left eigen-scores u(i). Index them by I;
4: find the subset of k + dout nodes with the highest right eigen-scores v( j). Index them by J ;
5: initialize max-heap H and edge set R to empty;
6: if e1 : 〈i1, j1〉 i1 ∈ I, j1 ∈ J , A(i1, j1) = 0 then
7: R ← R + e1
8: end if
9: Initialized row and column index i, j of product matrix P to 1, row-range in P to 1
10: while |R| < k do
11: CandidateExtension(i, j, row-range)
12: ex : 〈ix, jx〉 ← max(H)
13: R ← R + ex
14: i ← index of ix in I, j ← index of jx in J
15: end while
16: return R.

The efficiency of K-EDGEADDITION+ is summarized in the following lemma.

LEMMA 4.3 {EFFICIENCY OF K-EDGEADDITION +). For matrix with density d, the time
cost of Algorithm 4 is O(m+nt+√

dkt log t). The space cost of Algorithm 4 is O(n+m+t),
where t = max(k, din, dout).

PROOF. K-EDGEADDITION+ and K-EDGEADDITION are the same before line 5. At line 7,
the CandidateExtension function takes at most O(

√
dt) time to find a non-existing edge

at certain row/column in sparse matrix and O(log t) time to update the heap. Therefore,
the overall time cost is O(m + nt + √

dkt log t), which completes the proof of the time
complexity.
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ALGORITHM 5: CandidateExtension
Input: row and column index i, j in product matrix P, row-range
Output: add valid candidate edges to max-heap H
1: if j = 1 then
2: row-range← next valid row (inext) in the first column (i.e., index (inext, j) in P project to a

non-existing edge in A)
3: add (enext : 〈inext, j〉, u(inext)v( j)) to max-heap H
4: else
5: find next valid column ( jnext) in row i
6: if jnext < smallest column index of valid candidates above row i in H then
7: add (enext : 〈i, jnext〉, u(i)v( jnext)) to max-heap H
8: end if
9: for each row i′ between i and row-range do
10: if there exist a valid candidate edge at row i′ in H then
11: break
12: end if
13: find next valid column ( j ′) in row i′

14: if j ′ < smallest column index of current valid candidates above row i′ in H then
15: add (enext : 〈i′, j ′〉, u(i′)v( j ′)) to max-heap H
16: end if
17: end for
18: end if
19: return H.

In CandidateExtension function, the maximum number of candidate edges in max-
heap H is t. Therefore picking k edges from max-heap H would only cost a space of
size O(k + t). Therefore, the overall space cost (by omitting the smaller terms) is
O(m + n + t), which completes the proof of the space complexity.

5. EXPERIMENTAL EVALUATIONS

In this section, we provide empirical evaluations for the proposed K-EDGEDELETION,
K-EDGEADDITION and K-EDGEADDITION+ algorithms. Our evaluations mainly focus on
(1) the effectiveness and (2) the efficiency of the proposed algorithms.

5.1. Experimental Setup

Data sets. We used a popular set of real graphs for our experiments – the Oregon AS
(Autonomous System) router graphs, which are AS-level connectivity networks inferred
from Oregon route-views.1 These were collected once a week, for nine consecutive
weeks. Table II summarizes the nine graphs we used in our evaluations.

Evaluation criteria. As mentioned before, the leading eigenvalue λ of the graph is
the only graph parameter that determines the epidemic threshold for a large family
of information dissemination processes. Therefore, we report the change of the leading
eigenvalue for the effectiveness comparison – for both NetMelt and NetGel problems.
A larger change of the leading eigenvalue is better, which suggests that we can affect
the outcome of the dissemination process more. In addition, we also run virus propa-
gation simulations to compare how different methods affect the actual outcome of the
propagation. For the computational cost and scalability, we report the wall-clock time.

Machine configurations. All the experiments ran on the same machine with four
2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kernel).

1http://topology.eecs.umich.edu/data.html.
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Table II. Dataset Summary

Dataset n m

Oregon-A 633 2,172
Oregon-B 1,503 5,620
Oregon-C 2,504 9,446
Oregon-D 2,854 9,864
Oregon-E 3,995 15,420
Oregon-F 5,296 20,194
Oregon-G 7,352 31,330
Oregon-H 10,860 46,818
Oregon-I 13,947 61,168

Table III. Evaluations on the Approx. Quality. Larger is Better

Dataset k = 10 k = 50 k = 100 k = 500 k = 1000

Oregon-A 0.999 0.997 0.995 0.973 0.924
Oregon-B 0.999 0.999 0.998 0.993 0.988
Oregon-C 1.000 0.999 0.999 0.996 0.991
Oregon-D 0.999 0.999 0.999 0.994 0.988
Oregon-E 1.000 0.999 0.999 0.998 0.995
Oregon-F 1.000 0.999 0.999 0.998 0.997
Oregon-G 1.000 0.999 0.999 0.999 0.998
Oregon-H 1.000 1.000 0.999 0.999 0.999
Oregon-I 1.000 1.000 0.999 0.999 0.999

5.2. Effectiveness of K-EDGEDELETION

Approximation Quality. For both K-EDGEDELETION and K-EDGEADDITION, we want to
approximate the actual change of the leading eigenvalue by the first-order matrix per-
turbation theory. This is the only place we introduce the approximation. By Lemma 3.3,
it says that the quality of such an approximation depends on both the budget k as well
as the eigen-gap of the original graph, with an O(k) gap. Here, let us experimen-
tally evaluate how good this approximation is on real graphs. We compute the linear
correlation coefficient between the actual and approximate leading eigenvalue after
we randomly remove k (k = 10, 50, 100, 500, 1, 000) edges. The results are shown in
Table III. It can be seen that the approximation is very good – in all the cases, the
linear correlation coefficient is greater than 0.92, and often it is very close to 1.

The Impact of Decreasing the Leading Eigenvalue. Here, we evaluate the effectiveness
of the proposed K-EDGEDELETION in terms of decreasing the leading eigenvalue λ of the
graph. Lemma 3.1 suggests that the “important” edges on the original graph A might
become “important” nodes on the line graph L(A). We follow this intuition to design the
following comparative strategies: (1) randomly select k edges from the original graph
A (referred to as “Rand”); (2) select k edges with the highest degrees in the line graph
L(A) (referred to as “Line-Deg”); (3) select k edges with the highest eigen-scores in
the line graph L(A) (referred to as “Line-Eig”); and (4) select k edges with the highest
PageRank scores in the line graph L(A) (referred to as “Line-Page”). For “Rand”, we run
the experiments 100 times and report the average result. For “Line-Deg”, we have two
variants by using out-degree or in-degree. In our evaluation, we found that these two
variants give the similar results. Therefore, we only report the results by out-degree.
For the same reason, we only report the results by the right eigen-scores for “Line-
Eigs”. For “Line-Page”, there is an additional parameter of the teleport probability.
We run the experiments with the different teleport probabilities and report the best
results.
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Fig. 1. The decrease of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-
EDGEDELETION always leads to the biggest decrease of the leading eigenvalue.

Figure 1 presents the results on all the Oregon graphs, it can be seen that our K-
EDGEDELETION always leads to the biggest decrease in terms of the leading eigenvalue.
For example, on Oregon-C graph, the proposed K-EDGEDELETION decreases the leading
eigenvalue by 3.8 with the budget k = 50, which is almost double of the second best
method (e.g., 2.0 by “Line-Deg”). Therefore, we expect that K-EDGEDELETION would
affect the outcome of the dissemination processes better than the alternative choices,
e.g., having less number of infected nodes in the graph, and so on. We validate this
next.

Affecting Virus Propagation. Next, we evaluate the effectiveness of the proposed
K-EDGEDELETION in terms of minimizing the outcome of the information dissemination
processes. To this end, we simulate the virus propagation for the SIS model (susceptible-
infective-susceptible) on the graph [Wang et al. 2003]. For each method, we delete
k = 200 edges from the original graph. Let s = λb/d be the normalized virus strength
(bigger s means stronger virus), where b and d are the infection rate and death rate,
respectively. The results are presented in Figure 2, which is averaged over 1,000 runs.
It can be seen that the proposed K-EDGEDELETION is always the best – its curve is always
the lowest which means that we always, as desired, have the least number of infected
nodes in the graph with this strategy. In Figure 2, “Original” (the yellow curve) means
that we simulate the virus propagation on the original graph without deleting any
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Fig. 2. Comparison of minimizing the outcome of the virus propagation. Fraction of infected nodes vs. time
stamp. Lower is better. The proposed K-EDGEDELETION always leads to the least number of infected nodes.
Notice that y-axis is in the logarithmic scale.

edges. Notice that when the virus becomes stronger (Figure 2(b)), all the curves except
the proposed method mix with “Original”, which means that they all fail to affect the
virus propagation in this case. In contrast, our proposed method (the red curve) can
still significantly reduce the number of infected nodes.

Node Deletion vs. Edge Deletion. Finally, in some applications, e.g., to stop malware
propagation on the computer networks, both node deletion (e.g., shutting down some
machines) and edge deletion (e.g., blocking some links between machines) are feasible.
In this case, we want to know which strategy (node deletion or edge deletion) is more
effective in affecting the outcome of such propagation process. To this end, we use an
effective node immunization algorithm [Tong et al. 2010; Chen et al. 2016] to delete
k̃ = 1, 5, 10 nodes, respectively (referred to as “Node-Del”). For each k̃, we then use our
proposed K-EDGEDELETION to delete the same amount of edges from the original graph
(referred to as “Edge-Del”). We compare the decrease of the leading eigenvalues of the
two methods. The results are summarized in Figure 3. It can be seen that “Edge-Del”
always leads to a bigger decrease of the leading eigenvalue – which suggests that by
operating on the edge level, we can design a more effective algorithm with the same
budget to affect the outcome of the information dissemination process. The results are
consistent with the intuition – not all the edges adjacent to the “important” nodes,
which the node immunization algorithm aims to delete, are also “important” (e.g.,
many edges adjacent to an “important” node might link to/from some degree-1 nodes).
In other words, edge deletion enables us to optimize the underlying graph structure on
a finer granularity by picking each individual edge one by one.

5.3. Effectiveness of K-EDGEADDITION

To our best knowledge, there are no existing methods to add k new links into an
existing graph in order to increase its leading eigenvalue. Let Ā be the complementary
graph of A, which has the same node set as A, and Ā(i, j) = 1 iff A(i, j) = 0. With
the notation of the complementary graph, we use the following intuition to design the
comparative methods: to select k “important” edges from the complementary graph Ā
and add them into the original graph A. More specifically, we compare the proposed
K-EDGEADDITION with the following strategies: (1) randomly select k edges (referred to
as “Rand”); (2) select k edges with the highest out-degrees in the line graph of the
complementary graph Ā (referred to as “CompDeg”); (3) select k edges with the highest
right eigen-scores in the line graph of the complementary graph Ā (referred to as
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Fig. 3. Comparison between node deletion vs. edge deletion. Larger is better. With the same amount of edges
deleted, our proposed K-EDGEDELETION (red) leads to a bigger decrease in terms of the leading eigenvalue.

“CompEigs”); (4) select k edges with the highest PageRank scores in the line graph
of the complementary graph Ā (referred to as “CompPage”); and (5) select k edges by
running K-EDGEDELETION in the complementary graph Ā (referred to as “CompDelete”).
Again, for “Rand”, we run the experiments 100 times and report the average result.
We only report the results of “CompDeg” by out-degree and those of “CompEig” by
right eigen-scores, respectively, since the other variants give the similar performance.
For “CompPage”, we run the experiments with the different teleport probabilities and
report the best results.

The Impact of Increasing the Leading Eigenvalue. We first evaluate the effectiveness
of the proposed K-EDGEADDITION in terms of increasing the leading eigenvalue of the
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Fig. 4. The increase of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-EDGEADDITION

always leads to the largest increase of the leading eigenvalue. Notice that y-axis is in the logarithmic scale.

graph. From Figure 4, it can be seen that the proposed K-EDGEADDITION always leads
to the biggest increase in terms of the leading eigenvalue of the graph. Notice that for
all the comparative methods, they behave like “Rand” (blue curve), especially when the
budget k is small.

Affecting Virus Propagation. We also evaluated the effectiveness of the proposed K-
EDGEADDITION in terms of maximizing the outcome of the information dissemination
process. To this end, again, we simulate the virus propagation for the SIS model on
the graph. For each method, we add k = 200 new edges into the graph. Again, let
s = λb/d be the normalized virus strength, with bigger s being stronger virus. Here,
our goal is to increase the number of “infected” nodes (e.g., having more people in the
social networks to adopt a piece of good idea, etc) by introducing a set of new links
into the graph. The result is presented in Figure 5, which is averaged over 1,000 runs.
It can be seen that the proposed K-EDGEADDITION is always the best – its curve is
always the highest which means that we always have the largest number of “infected”
nodes in the graph with this strategy. Notice that when the strength of the virus is
weak (Figure 5(a)), all the curves except the proposed method mix with or are very
close to “Original” (yellow curve), which means that they have little impact to boost
the outcome of the propagation in this case. In contrast, our proposed method (the
red curve) can still significantly increase the number of “infected” nodes. Therefore,
we conclude that our proposed K-EDGEADDITION is much more effective to guide the
outcome of the dissemination process.
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Fig. 5. Comparison of maximizing the outcome of virus propagation. Fraction of “infected” nodes vs. time
stamp. Larger is better. The proposed K-EDGEADDITION always leads to the largest number of “infected” nodes.
Notice that y-axis is in the logarithmic scale.

Fig. 6. The running time of K-EDGEADDITION and K-EDGEADDITION+ w.r.t different k.

5.4. Efficiency of K-EDGEADDITION+
In this section, we compare the efficiency of K-EDGEADDITION and K-EDGEADDITION+.
We present the experiment results on both small size graphs (Oregon-A,Oregon-B) and
large size graphs (Oregon-H, Oregon-I) in Figure 6. The results on rest of the graphs in
Oregon data set have similar results with the above four. From Figure 6, it is easy to
see that the running time of K-EDGEADDITION grows linearly w.r.t the number of edges to
be added. While the K-EDGEADDITION+ runs in almost constant time. It’s obvious to see
that K-EDGEADDITION+ algorithm is much more efficient and scalable in the experiment
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Fig. 7. Comparison of the scalability of K-EDGEADDITION and K-EDGEADDITION+.

Fig. 8. Scalability of proposed algorithms. K-EDGEDELETION scales near-linearly w.r.t the size of the graph.

data set. Since the graph in Oregon-A only has 633 nodes, which is smaller than 1, 000,
the term t in the complexity function of K-EDGEADDITION is upper bounded by n. As
k = 500, 1, 000 is relatively large, it is more efficient to sort the product array first and
then take the top k edges than picking out largest product pair from the array for k
times. The sorting operation takes O(tlogt) time no matter how large k is, which makes
the size of the graph (m, n) dominate the complexity function. As a consequence, the
calculation time of k = 500 and k = 1, 000 for K-EDGEADDITION looks almost the same
on Oregon-A.

To compare the scalability of the two algorithms, we experimented on different sizes
of graphs and the results are presented in Figure 7. The experiment is done with the
same environment setting as above. Both K-EDGEADDITION and K-EDGEADDITION+ scale
almost near-linear w.r.t m, which means they are both suitable for large graphs. We
can see that the running time of K-EDGEADDITION+ is almost the same when setting
different k values to it. This is due to the sparsity of the graphs, which makes the size
of a graph dominate the complexity function. It’s obvious to see that K-EDGEADDITION+
scales better than K-EDGEADDITION.

5.5. Scalability

We use the subsets of the largest data set Oregon-I to evaluate the scalability of
the proposed algorithms. The results are presented in Figure 8. We can see that the
proposed K-EDGEDELETION also scales almost near-linearly w.r.t m, which means that
it is suitable for large graphs. For both K-EDGEDELETION and K-EDGEADDITION cases,
we also observe a slight super-linear trend. Part of the reason is due to the fact that
we use the power method to compute the leading eigenvalue and the corresponding
eigenvectors. When m increases, the actual iteration number in the power method also
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Fig. 9. The effectiveness of K-EDGEDELETION w.r.t. the density of the graph.

Fig. 10. The effectiveness of K-EDGEADDITION w.r.t. the density of the graph.

Fig. 11. The efficiency of K-EDGEDELETION and K-EDGEADDITION w.r.t. the density of the graph.

tends to increase. More details about the analysis of this super-linear trend can be seen
in Tong et al. [2012].

5.6. The Impact of the Graph Density

In this section, we evaluate the impact of graph density on the proposed K-
EDGEDELETION and K-EDGEADDITION algorithm. The experiment results are based on
Oregon-A, where we randomly delete and add certain number of edges to generate
graphs with different densities. Figure 9 and Figure 10 show the effectiveness of
K-EDGEDELETION and K-EDGEADDITION, respectively. It can be seen that the proposed
methods outperform all alternative strategies consistently with different graph densi-
ties. Figure 11 shows the efficiency of K-EDGEDELETION and K-EDGEADDITION as graph
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density changes. It can be seen that the running time of both algorithms are stable w.r.t
the graph densities, with a light linear increase for the K-EDGEDELETION algorithm.

6. RELATED WORK

In this section, we review the related work, which can be categorized into three parts:
information dissemination, affecting algorithms, and node/edge importance measure.

Information Dissemination. Many research works in virus propagation have been
devoted to studying the so-called epidemic threshold, that is, to determine the condition
under which an epidemic will break out. While earlier works [Hethcote 2000] focus on
some specific types of graph structure (e.g., random graphs, power-law graphs, etc),
Wang et al. [2003] and its follow-up paper by Ganesh et al. [2005] found that, for the
flu-like SIS model, the epidemic threshold for any arbitrary, real graph is determined
by the leading eigenvalue of the adjacency matrix of the graph. Prakash et al. [2012a]
further discovered that the leading eigenvalue (and a model-dependent constant) is
the only parameter that determines the epidemic threshold for all virus propagation
models (more than 25 models, including H.I.V.) in the standard literature. In this work,
we aim to take one step further, i.e., how to optimize (minimize or maximize) the leading
eigenvalue of the graph by deleting or adding a set of links.

There are also many research interests in studying other types of informa-
tion dissemination processes on large graphs, including (a) information cascades
[Bikhchandani et al. 1992; Goldenberg et al. 2001], (b) blog propagations [Leskovec
et al. 2007; Gruhl et al. 2004; Kumar et al. 2005; Richardson and Domingos 2002],
(c) patterns of influence propagation [Matsubara et al. 2012], (d) spreading process of
competing information [Beutel et al. 2012; Valler 2012; Wei et al. 2013], and (e) viral
marketing and product penetration [Kempe et al. 2003; Leskovec et al. 2006].

Affecting Algorithms. Hayashi et al. [2003] derived the extinction conditions under
random and targeted immunization for the SHIR model (Susceptible, Hidden, Infec-
tious, Recovered). Tong et al. [2010] proposed an effective node immunization strategy
for the SIS model by approximately minimizing the leading eigenvalue. Briesemeister
et al. [2003] studied the defending policy in power-law graphs. Prakash et al. [2010]
and Valler et al. [2011] proposed effective algorithms to perform node immunization
on time-varying graphs. Other algorithms to affect the outcome of the information
dissemination include the influence maximization/minimization [Kempe et al. 2003;
Datta et al. 2010; Chen et al. 2010], finding effectors in social networks [Lappas et al.
2010], identifying critical nodes in networks, [Wang et al. 2011; Habiba 2013; Berger-
Wolf et al. 2011] and so on. With the assumption that a node can get involved in the
dissemination process from more than one neighbor, Tuli et al. [2012] proposed a way to
select critical nodes for both simple and complex contagions. Nguyen et al. aim to pick
out critical nodes in the network under limited budget as in Nguyen and Zheng [2013]
and Nguyen [2013]. More specifically, Saito et al. [2011] and Yamagishi et al. [2011]
explored the attributes of nodes and applied them on building the diffusion probability
model and opinion formation model, respectively. Notice that all these works focus on
operating on the node level to affect the outcome of the dissemination. In contrast, we
study the equally important, but much less studied affecting algorithms by operating
on the edge level.

There exist some empirical evaluations on edge removal strategies for slightly dif-
ferent purposes, such as, slowing down the influenza spreading [Marcelino and Kaiser
2009], minimizing the average infection probability [Schneider et al. 2011], evaluating
and comparing the attack vulnerability [Holme et al. 2002], and so on. The closest
related work to our K-EDGEDELETION algorithm is Bishop and Shames [2011], which
proposed a convex optimization based approach to approximately minimize the leading
eigenvalue of the graph. However, the method is based on semi-definite programming
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and does not scale to large graphs. Moreover, for all these methods, it remains unclear
if they can be generalized to address the even more challenging NetGel problem, where
we want to add new edges to promote the information dissemination.

Other interesting studies include self-similar selection approach of immuniza-
tion [Kim and Jung 2013], which makes it possible to do the analysis in the absence of
network morphology at individual node level. The reverse engineering of immunization
problem [Prakash et al. 2012b, 2013] is also a hot topic in this domain, which can be
defined as: given a snapshot of a graph in which an infection has been spreading for
some time, find out the original seed set where the infection started. A thorough studies
of the theory about determining epidemic in the network, algorithms about effective
immunization and reverse engineering are given in Prakash [2012a, 2012b].

Measuring the Importance of Nodes and Edges. In the literature, there are a lot of
node importance measurements, including betweenness centrality, both the one based
on the shortest path [Freeman 1977] and the one based on random walks [Newman
2005; Kang et al. 2011] PageRank [Page et al. 1998], HITS [Kleinberg 1998], and
coreness score [Moody and White 2002]. Our work is also related to the so-called k-
vital edges problem, which aims to delete a set of links from the graphs to increase the
shortest path length [Liang et al. 2000] or the weight of the minimum spanning tree of
the remaining graph [Shen 1995]. K-vital edge problem itself is known to be NP-Hard.
Other remotely related work includes network inhibition [Phillips 1993] and network-
interdiction [Wood 1993; Israeli and Wood 2002], both of which are also NP-Hard.

General Graph Mining. There is a lot of work on graph mining. Representative
works include pattern and law mining [Broder et al. 2000], frequent substructure dis-
covery [Xin et al. 2005], compression [Maserrat and Pei 2010], fraud and anomaly
detection [Noble and Cook 2003], community mining and graph partition [Karypis and
Kumar 1999; Satuluri and Parthasarathy 2009; Maiya and Berger-Wolf 2010; Yin et al.
2005], social action tracking [Tan et al. 2010], user click-through modeling [Liu et al.
2009; Agarwal et al. 2007], collaborative filtering [Koren 2009; Ge et al. 2010; Shan and
Banerjee 2010; Heckerman et al. 2000], team formation [Lappas et al. 2009], network
classification [Neville et al. 2009], link prediction [Liben-Nowell and Kleinberg 2007;
Lichtenwalter et al. 2010; Backstrom and Leskovec 2011], sampling in graph [Maiya
and Berger-Wolf 2011; Maiya 2011], within-network and across-network classifica-
tion [Henderson et al. 2011], dynamic graph eigen-functions tracking [Chen and Tong
2015], multi-layered network connectivity controlling, [Chen et al. 2015] and so on.

7. CONCLUSION

In this paper, we formulate the problem of dissemination management via edge manip-
ulation and conduct a comprehensive study on the problems. The main contributions
of the paper are:

A. Algorithms. We take the leading eigenvalue of the graph as key parameter to control
the information dissemination process. Based on this criteria, we propose effective
and scalable algorithms and their variants for NetMelt and NetGel, respectively;

B. Proofs and Analysis. We prove the hardness of the problem (Lemma 3.2), the accu-
racy (Lemma 3.3 and Lemma 4.1) and the complexity of our methods (Lemma 3.4,
Lemma 4.2, and Lemma 4.3), and the equivalence between different strategies
(Lemma 3.1, Lemma A.1, and Lemma A.2);

C. Experimental Evaluations. Our evaluations on real large graphs show that (a) com-
pared with alternative algorithms to optimize the link structure, our methods are
much more effective to achieve the desired outcome of the dissemination process;
(b) compared with the node deletion strategy, our K-EDGEDELETION is more effective
by operating on the edge level; (c) compared with K-EDGEADDITION, K-EDGEADDITION+
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is more efficient for real graphs; and (d) both K-EDGEDELETION and K-EDGEADDITION

scale to large graphs.

APPENDIX

A. HIGHER-ORDER METHOD FOR NETMELT

From Lemma 3.3, it can be seen that the only place we introduce the approximation in
Algorithm 1 is to approximate the actual decrease of the leading eigenvalue by the first-
order matrix perturbation theory. The readers might wonder if we can further improve
the quality by using higher-order matrix perturbation theory, while maintaining the
linear scalability of the algorithm.

We explored second-order matrix perturbation theory to approximate the actual de-
crease of the leading eigenvalue, and found that (1) it generates very similar results as
the proposed K-EDGEDELETION algorithm and (2) it requires 5–10 times more wall-clock
time. The reason might be that for the NetMelt problem, the first-order perturba-
tion already gives a very good approximation. Therefore, in practice, we recommend
K-EDGEDELETION for simplicity.

Nonetheless, the new algorithm based on the second-order perturbation exhibits
some interesting theoretic properties. It also helps understand the relationship be-
tween edge deletion and node deletion on the algorithmic level. We present it here for
the completeness.

Let c = 1
u′v , with second-order matrix perturbation, we can approximate2 the impact

of deleting a set of edges S in terms of the leading eigenvalue as:

λ − λ̂ � Impact(S) = c

⎛
⎝∑

ex∈S
u(ix)v( jx) − 1

2λ

∑
ex∈S,ey∈S, jx=iy

u(ix)v( jy)

⎞
⎠ . (7)

Compared with the first-order perturbation (Equation (3)), we have an additional
penalized term in Equation (7): u(ix)v( jy) for any two adjacent edges ex and ey. The
intuition is to encourage the edges in the set S to be far away (not adjacent) from each
other.

By Equation (7), the impact of different edges in the set S is no longer independent
with each other. At the first glance, this might complicate the algorithm since now we
need to optimize at the set level, that is, to find a set of edges that collectively maximize
Equation (7). However, by the following lemma, the impact defined in Equation (7)
exhibits some nice diminishing return properties.

LEMMA A.1 (SECOND-ORDER APPROXIMATION PROPERTIES). The Impact(S) defined in
Equation (7) has the following properties:

(1) Impact(�) = 0, where � is an empty set;
(2) Impact(S) is monotonically non-decreasing w.r.t the set S;
(3) Impact(S) is sub-modular w.r.t the set S.

PROOF. First, when S = �, we have

Impact(S) = c

⎛
⎝∑

ex∈�

u(ix)v( jx) − 1
2λ

∑
ex∈�,ey∈�, jx=iy

u(ix)v( jy)

⎞
⎠

= 0. (8)

2This formulas is similar as the one in Milanese et al. [2010].
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In the following proof, we define I,J ,K be three sets and I ⊆ J . Based on I,J ,K:
we define S = I ∪ K, T = J ∪ K, R = J \I. And Ã is denoted as the adjacency
matrix of the line graph L(A).

By the definition of Impact(S) in (7), we have

Impact(S) − Impact(I)

= Impact(K) − c

⎛
⎝ 1

2λ

∑
ex∈I,ey∈K, jx=iy

u(ix)v( jy) + 1
2λ

∑
ex∈K,ey∈I, jx=iy

u(ix)v( jy)

⎞
⎠

≥ c

⎛
⎝∑

ex∈K
u(ix)v( jx) − 1

2λ

∑
ex∈S,ey∈K, jx=iy

u(ix)v( jy) − 1
2λ

∑
ex∈K,ey∈S, jx=iy

u(ix)v( jy)

⎞
⎠

= c

⎛
⎝∑

ey∈K
v( jy)

⎛
⎝1

2
u(iy)− 1

2λ

∑
ex∈S,ey∈K, jx=iy

u(ix)

⎞
⎠

+
∑
ex∈K

u(ix)

⎛
⎝1

2
v( jx)− 1

2λ

∑
ex∈K,ey∈S, jx=iy

v( jy)

⎞
⎠

⎞
⎠

≥ c

⎛
⎝∑

ey∈K
v( jy)

⎛
⎝1

2
u(ey) − 1

2λ

∑
ex :Ã(ex,ey)=1

u(ex)

⎞
⎠

+
∑
ex∈K

u(ix)

⎛
⎝1

2
v(ex) − 1

2λ

∑
ey:Ã(ex,ey)=1

v(ey)

⎞
⎠

⎞
⎠

= c

⎛
⎝∑

ey∈K
v( jy)

(
1
2

u(ey) − 1
2λ

λu(ey)
)

+
∑
ex∈K

u(ix)
(

1
2

v(ex) − 1
2λ

λv(ex)
)⎞

⎠
= 0. (9)

By Equation (9), we can conclude that Impact(S) is monotonically non-decreasing w.r.t
the set S.

Next we prove that Impact(S) is sub-modular w.r.t the set S.

Impact(S) − Impact(I)

= Impact(K) − c

⎛
⎝ 1

2λ

∑
ex∈I,ey∈K, jx=iy

u(ix)v( jy) + 1
2λ

∑
ex∈K,ey∈I, jx=iy

u(ix)v( jy)

⎞
⎠ (10)

Impact(S) − Impact(J )

= Impact(K) − c

⎛
⎝ 1

2λ

∑
ex∈J ,ey∈K, jx=iy

u(ix)v( jy) + 1
2λ

∑
ex∈K,ey∈J , jx=iy

u(ix)v( jy)

⎞
⎠ . (11)
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By Equations (10) and (11) we have

(Impact(S) − Impact(I)) − (Impact(S) − Impact(J ))

= c

⎛
⎝ 1

2λ

∑
ex∈R,ey∈K, jx=iy

u(ix)v( jy) + 1
2λ

∑
ex∈K,ey∈R, jx=iy

u(ix)v( jy)

⎞
⎠

≥ 0.

⇒ Impact(S) − Impact(I) ≥ Impact(S) − Impact(J ). (12)

Therefore, the function Impact(S) is sub-modular w.r.t the set S.
Thanks to such diminishing return properties, it naturally leads to the following

greedy algorithm (K-EDGEDELETION+) to find a near-optimal subset of edges to delete
from the original graph A. And it can be shown that the overall time complexity of
K-EDGEDELETION+ remains linear w.r.t the size of the graph.

An interesting property of Algorithm 6 is that it builds the equivalence between edge
deletion and node deletion on the algorithmic level:

ALGORITHM 6: K-EDGEDELETION+
Input: the adjacency matrix A and the budget k
Output: k edges indexed by set S
1: compute the first eigen-value λ of A; compute the corresponding left and right eigenvectors

u and v (u, v ≥ 0), respectively;
2: initialize the set S to be empty;
3: score(ex) = u(ix)v( jx) (ex : 〈ix, jx〉, ex = 1, . . . , m);
4: for k0 = 1, . . . , k do
5: find e0 = argmaxex ,ex /∈Sscore(ex);
6: add the new edge e0 : (i0, j0) into S;
7: for each edge ey : 〈iy, jy〉 s.t. jy = i0 do
8: score(ey) ← score(ey) − 1/(2λ)u(iy)v( j0);
9: end for
10: for each edge ey : 〈iy, jy〉 s.t. iy = j0 do
11: score(ey) ← score(ey) − 1/(2λ)u(i0)v( jy);
12: end for
13: end for

LEMMA A.2 (EQUIVALENCE OF ALGORITHM 6 TO NODE IMMUNIZATION). Let S be the set of
edges by running Algorithm 6 on graph A; T be the set of edges by running the node
immunization algorithm [Tong et al. 2010] on the line graph L(A); and |S| = |T |. We
have S = T .

PROOF. In the node immunization algorithm, the score of a node i in undirected graph
(symmetric matrix B) at each round of computation is

score(i) = (2λ − B(i, i))u(i)2 − 2B(i,S)u(S)u(i) (13)

where u is the eigenvector of graph B, and S is the selected node set for current round.
The generalized score of node i in directed graph (asymmetric matrix B) is

score(i) = (2λ − B(i, i))u(i)v(i) − (B(i,S)u(i)v(S) + B(S, i)u(S)v(i)). (14)

Let ex be an edge of graph A and Ã be the adjacency matrix of the line graph L(A).
Based on Lemma 1 and the assumption that there is no self-reference link directed
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graph, The score of ex running by node immunization algorithms on L(A) would be

˜score(ex)
= (2λ − Ã(ex, ex))ũ(ex)ṽ(ex) − (Ã(ex, T̃ )ũ(ex)ṽ(T̃ ) + Ã(T̃ , ex)ũ(T̃ )ṽ(ex))

= (2λ − Ã(ex, ex))u(ix)v( jx) −
⎛
⎝ ∑

ey∈T̃ ,Ã(ex,ey)=1

u(ix)v( jy) +
∑

ey∈T̃ ,Ã(ey,ex)=1

u(iy)v( jx)

⎞
⎠

= 2λu(ix)v( jx) −
⎛
⎝ ∑

ey∈T̃ ,Ã(ex,ey)=1

u(ix)v( jy) +
∑

ey∈T̃ ,Ã(ey,ex)=1

u(iy)v( jx)

⎞
⎠

= 2λ

⎛
⎝u(ix)v( jx) − 1

2λ

⎛
⎝ ∑

ey∈T̃ ,Ã(ex,ey)=1

u(ix)v( jy) +
∑

ey∈T̃ ,Ã(ey,ex)=1

u(iy)v( jx)

⎞
⎠

⎞
⎠ . (15)

While the score of edge ex by running Algorithm 6 at each round is

score(ex) = u(ix)v( jx) − 1
2λ

⎛
⎝ ∑

ey∈S̃,Ã(ex,ey)=1

u(ix)v( jy) +
∑

ey∈S̃,Ã(ey,ex)=1

u(iy)v( jx)

⎞
⎠ . (16)

By Equations 15 and 16, we have

˜score(ex) = 2λscore(ex). (17)

Therefore, both algorithms would pick out the same edge ex at each round, which in
the end makes S = T and completes the proof.

B. PROOF FOR LEMMA 3.1

PROOF. Let u and v be the left and right eigenvectors of the graph A that correspond to
any eigenvalue λ. We have Av = λv and u′A = λu′. Equivalently, we have:

λv(i) =
∑

j:A(i, j)=1

v( j) and λu( j) =
∑

i:A(i, j)=1

u(i). (18)

Let ex (ex = 1, . . . , m) be an edge of the graph A. Recall that we can also represent
ex by its source and target nodes: 〈ix, jx〉. Let Ã be the adjacency matrix of the line
graph L(A). By the definition of the line graph, we have Ã(ex, ey) = 1 if jx = iy, and
Ã(ex, ey) = 0 otherwise (ex, ey = 1, . . . , m).

We define two m × 1 vectors ũ and ṽ as: ũ(ex) = u(ix) and ṽ(ex) = v( jx) with ex =
1, . . . , m.

Next, we will show that ũ and ṽ are the left and right eigenvectors of Ã, respectively,
with λ being the corresponding eigenvalue.
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For any edge ex (ex = 1, . . . , m), we have

Ã(ex, :)ṽ =
∑

ey:Ã(ex,ey)=1

ṽ(ey)

=
∑

ey:iy= jx

v( jy) (all edges adjacent from ex)

=
∑

jy:A( jx, jy)=1

v( jy) (all edges from node jx)

= λv( jy) (due to Equation (18))
= λṽ(ex) (due to definition of ṽ). (19)

Similarly, for any edge ex(ex = 1, . . . , m), we have

ũ′Ã(:, ex) =
∑

ey:Ã(ey,ex)=1

ũ(ey)

=
∑

ey: jy=ix

u(iy) (all edges adjacent to ex)

=
∑

jy:A( jy,ix)=1

u(iy) (all edges to node ix)

= λu(ix) (due to Equation (18))
= λũ(ex) (due to definition of ũ) (20)

Putting Equation (19) and Equation (20) together, we have Ãṽ = λṽ and ũ′Ã = λũ′,
which completes the proof.

C. PROOF FOR LEMMA 3.2

PROOF. We consider the decision version of the K-Node deletion problem as follows.

PROBLEM 3. K-Node Deletion (Decision Version) (DEL(G, k))

Given. A large undirected3 unweighted connected graph G with n nodes and an
integer k;

Output. A subset S of k nodes. By deleting S from graph G (with adjacency matrix
A), we get a new graph G(S)(with adjacency matrix Â), in which λ(S) ≤ τ . To make
the problem easier, we proof that the problem is already NP-complete when τ = 0.

First, we show that K-Node deletion problem is in NP: given subset (S) to be deleted
from graph G, we can check in poly-time if the first eigenvalue of new graph G(S) is less
than 0 or not.

Second, we prove that K-Node deletion problem is poly-time reducible from a known
NP-complete problem, i.e., the Independent Set problem(IND(G, k)).

PROBLEM 4. Independent Set problem (IND(G, k))

Given. A large undirected unweighted connected graph G = (V, E) and a number k
> 0

Output. A set of k vertices in which no two of them are adjacent

3We simplify the problem on undirected graph here. Problem on undirected graph is a special case of directed
graph problem and is much simpler than the latter one. The NP-Completeness of latter one implies that the
former one is NP-Complete as well.
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Assume the size of G is n. Given an instance of IND(G, k), we create an instance
DEL(G, n − k) (delete n − k nodes in G such that the the first eigenvalue in new graph
is less or equal to 0). We now need to prove two things:

1. If there is a YES answer to IND(G, k), then there is a YES answer to DEL(G, n− k).
The adjacency matrix of G which has YES answer to IND(G, k) is

A =
(

Sk×k Xk×(n−k)
Xk×(n−k) T(n−k)×(n−k)

)

where Sk×k = 0, because the k nodes in S are independent to each other. By deleting
the rest n−k nodes in T (T = V/S), we have Xk×(n−k) = 0, T(n−k)×(n−k) = 0. Therefore,
the adjacency matrix for new graph G(T ) has Â = 0. Hence λ(T ) = λ(0)= 0. So there
is a YES answer to DEL(G, n − k).

2. If there is a NO answer to IND(G, k), then there is a NO answer to DEL(G, n − k).
Suppose we have a YES answer to DEL(G, n− k). Then by deleting n− k nodes from
graph G (suppose they are in T ), we will get new graph G(T ) with λ(T ) ≤ 0 where

Â =
(

Sk×k 0k×(n−k)
0k×(n−k) 0(n−k)×(n−k)

)
.

Since Sk×k ≥ 0, to satisfy λ(T ) ≤ 0, we need to have Sk×k = 0, which implies that all
the k nodes in S are independent to each other. The conclusion is contradict with the
assumption that there is a NO answer to IND(G, k), therefore DEL(G, n − k) can only
have NO answer here.

Hence, K-node Deletion (Decision Version) is NP-complete.
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