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The connectivity of networks has been widely studied in many high-impact applications, ranging from immu-
nization, critical infrastructure analysis, social network mining, to bioinformatic system studies. Regardless
of the end application domains, connectivity minimization has always been a fundamental task to effectively
control the functioning of the underlying system. The combinatorial nature of the connectivity minimization
problem imposes an exponential computational complexity to find the optimal solution, which is intractable
in large systems. To tackle the computational barrier, greedy algorithm is extensively used to ensure a near-
optimal solution by exploiting the diminishing returns property of the problem. Despite the empirical success,
the theoretical and algorithmic challenges of the problems still remain wide open. On the theoretical side,
the intrinsic hardness and the approximability of the general connectivity minimization problem are still
unknown except for a few special cases. On the algorithmic side, existing algorithms are hard to balance
between the optimization quality and computational efficiency. In this article, we address the two challenges
by (1) proving that the general connectivity minimization problem is NP-hard and 1 − 1/e is the best ap-
proximation ratio for any polynomial algorithms, and (2) proposing the algorithm CONTAIN and its variant
CONTAIN+ that can well balance optimization effectiveness and computational efficiency for eigen-function
based connectivity minimization problems in large networks.
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1 INTRODUCTION

Network connectivity has been extensively studied in a myriad of high-impact domains such as
immunization, critical infrastructure analysis, social network mining, and bioinformatic system
studies. Varying by the applications, the connectivity of the network may take different forms as
well. For example, in the immunization-related applications, epidemic threshold [45] is commonly
used to measure the connectivity for disease propagation; while in the critical infrastructure sce-
nario, natural connectivity [24] is considered as a good measure to evaluate the robustness of
the system. Despite the various forms, the connectivity minimization problem has always been a
fundamental task in most of the applications, in which a less connected network or subnetwork is
more preferred [29]. The primary goal for connectivity minimization is to find a set of nodes/edges
whose removal may lead to the destruction of the underlying network. For example, in the crit-
ical infrastructure construction scenario, high-impact facilities and links can be identified by the
connectivity optimization algorithms that minimize the natural connectivity [24] of the network.
The selected facilities and links can be viewed as the backbone of the network, which are essential
to ensure the full functioning of the entire system. While in the immunization scenario, disease
control centers need to vaccine high-impact entities and cut down highly contagious connections
to prevent the spread of the disease. To identify those high-impact entities and contagious connec-
tions in the first place, connectivity optimization algorithms can be applied to locate the critical
nodes or edges whose removal would minimize the epidemic threshold of the network [45].

The main computation obstacle for the connectivity minimization problems lies in its combina-
torial nature. Specifically, for the global connectivity minimization problem, suppose the number
of nodes and edges in the network isn andm, respectively, then the number of all possible node sets
of size k would be

(
n
k

)
and the number of all possible edge sets is

(
m
k

)
. Such exponential complexity

would make exhaust search intractable even in mid-sized networks.
To reduce the exponential time complexity, existing algorithms predominantly rely on the

greedy scheme. Taking the node deletion-based connectivity minimization problem for an exam-
ple, the greedy scheme would iteratively collect the node that has the largest impact on the pre-
defined connectivity in the network until the budget is used up. In virtue of the diminishing returns
property on a wide-range of the connectivity minimization problems [8], the greedy scheme can se-
cure a near-optimal approximated solution with an approximation ratio of 1 − 1/e [42]. A key step
in the greedy scheme is to calculate the impact of each candidate node/edge on the given connec-
tivity measure, which often involves eigen-decomposition operations with polynomial complexity
w.r.t. the size of the network. Obviously, a polynomial algorithm still can not handle large-scale
networks efficiently. To further accelerate the algorithm, matrix perturbation based methods are
frequently used to approximate the impact of a node/edge [11]. Such approximation algorithms
have been proved to scale linearly w.r.t. the network size, while exhibiting empirical superiority
over other alternative methods.

Although the above-mentioned methods are empirically effective for some specific connectivity
minimization problems, two main challenges for the general connectivity minimization problem
still remain largely open. On the theoretical side, the hardness of the general connectivity mini-
mization problem has never been systematically justified except for a few special instances (e.g.,
epidemic threshold [12] and triangle capacity [37]). Furthermore, although the greedy scheme
can guarantee a 1 − 1/e approximation ratio for the connectivity minimization problem, it still re-
mains unknown if a better approximation ratio can be achieved within polynomial time. On the
algorithmic side, exact greedy algorithms often bear polynomial time complexity, which is not
scalable in large-scale networks. Although matrix perturbation based approximation methods can
simplify the complexity down to the linear scale, their optimization quality is highly dependent
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on the spectrum of the underlying network (the optimization quality would deteriorate quickly in
networks with small eigen-gaps [10, 30]).

In this article, we address the theoretical and algorithmic challenges of the connectivity mini-
mization problem. The main contributions of the article can be summarized as follows:

—Revealing the Fundamental Limits. We prove that for the connectivity minimization prob-
lem on a wide-range of connectivity measures, (1) is NP-hard and (2) (1 − 1/e ) is the best
approximation ratio for any polynomial algorithms, unless NP ⊆ DTIME (nO (log log n) )1.

—Developing New Algorithms. We propose an effective algorithm (CONTAIN) for eigen-
function based network connectivity optimization (NETCOM). The centerpieces of the
proposed method include (a) an effective impact score approximation method and (b) an ef-
ficient eigen-pair update method by leveraging partial QR decomposition and the sparse,
low-rank property of the network perturbation matrix. The proposed CONTAIN algorithm
bears three distinct advantages over the existing methods, including (1) effectiveness, being
able to handle small eigen-gap networks, consistently outperforming the state-of-the-art
methods over a diverse set of real networks; (2) scalability, with a linear complexity w.r.t.
the network size; and (3) generality, applicable to a variety of different eigen-function based
network connectivity measures (e.g., leading eigenvalue, triangle capacity, and natural con-
nectivity) as well as network operations (node vs. edge deletion). In addition, we also pro-
pose a variation of CONTAIN (CONTAIN+) which can further simply the computational
complexity by deriving a closed-form approximation on node/edge impact scores, which
saves the step for calculating the updated eigen-pairs.

The rest of the article is organized as follows. In Section 2, we give the formal definition of
the connectivity minimization problem. In Section 3, we prove the hardness and approximability
of the problem. In Section 4, we describe the minimization algorithm CONTAIN and its variant
CONTAIN+. In Section 5, we evaluate the effectiveness and efficiency of the proposed method on
real datasets. In Section 6, we present an overview of the related literature and then conclude in
Section 7.

This article is a significant extension of [9], where we have studied the fundamental limits of con-
nectivity optimization problem and introduced the CONTAIN algorithm. Although the CONTAIN
algorithm is efficient for optimizing the eigen-function based connectivity measures as shown
in [9], it needs to perform updated eigen-pairs approximation on every candidate node/edge in or-
der to calculate its connectivity impact. Such scheme would make the complexity of the algorithm
strongly dependent to the efficiency of the updated eigen-pair approximation step. In this exten-
sion, we propose a closed-form approximation algorithm CONTAIN+ which can effectively infer
the node/edge connectivity impact without performing eigen-pair approximation, and compare it
with CONTAIN regarding their effectiveness and efficiency both theoretically and empirically.

2 PROBLEM DEFINITION

In this section, we formally introduce the NETCOMproblem and review the general strategy of
greedy algorithms.

Table 1 gives the main symbols used throughout the article. Following the convention, we use
bold upper-case for matrices (e.g., A), bold lower-case for vectors (e.g., a), and calligraphic for sets
(e.g., A). We use ˜ to denote the notations after node/edge deletion, and Δ to denote the pertur-
bations (e.g., ΔA = Ã − A). C (G ) represents the network connectivity measure to be optimized in
G; o indicates an element (a node/edge) in network G; I (o) denotes the impact score of element o

1DT I ME (t (n)): the collection of languages that are decidable by O (t (n)) time deterministic Turing machine [47].
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Table 1. Main Symbols

Symbol Definition and Description
G (V ,E) an undirected network

A,B the adjacency matrices (bold upper case)
a, b column vectors (bold lower case)
A,B sets (calligraphic)
A(i, j ) the element at the ith row and the jth column in A

a(i ) the ith element of vector a

A′ transpose of matrix A

ΔA perturbation of A

Ã the adjacency matrix after node/edge deletion on A

m,n number of edges and nodes in network G
C (G ) connectivity measure of network G
CT (G ) the local connectivity of subgraph T on network G
F (Λ(r ) ) associated eigen-function for C (G )

o a network element in G (a node/edge)
I (o) connectivity impact score of o on C (G )
IT (o) local connectivity impact score of o on CT (G )
λ, u the leading eigenvalue and eigenvector of A (in magnitude)
Λ,U the eigenvalue and eigenvector matrix of A

Λ(r ),U(r ) the top-r eigen-pairs of A (in magnitude)
k the budget

on C (G ); Λ and U denote the eigenvalue matrix and eigenvector matrix for the adjacency matrix
A of the network.

2.1 Network Connectivity Measures

Many network connectivity measures can be defined as

C (G ) =
∑
π ∈G

f (π ) (1)

with

f (π ) =

{
wπ > 0 if π is a valid subgraph
0 otherwise.

where π is a subgraph of G, f is a non-negative function that maps any subgraph in G to a non-
negative real numberwπ (i.e., f : π → R+), which can be customized by different application sce-
narios. In [8], various weight functions are discussed for different connectivity measures. Specif-
ically, we have f (ϕ) = 0 for empty set ϕ; when f (π ) > 0, we call subgraph π as a valid subgraph.
In other words, the network connectivity C (G ) can be viewed as a weighted aggregation of the
connectivities of all valid subgraphs in the network.

By choosing an appropriate f () function (please refer to [8] for details), Equation (1) includes
several prevalent network connectivity measures, e.g., path capacity (i.e., sum of weighed paths
in the network, which is in close relation to the epidemic threshold), triangle capacity (i.e., total
number of triangles in the network, which is rooted in social balance theory), and natural connec-
tivity (i.e., sum of weighted loops in the network, which is closely related to network robustness).
In terms of computation, it is often much more efficient to either approximate or compute these
connectivity measures by the associated eigen-function F (Λ(r ) ), where Λ(r ) represents the top-r
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eigenvalues of A. For example, the path capacity converges to the leading eigenvalue of the adja-
cency matrix of the network [5], the triangle capacity can be approximated by the sum of cubes
of the eigenvalues [51], and the natural connectivity is calculated by the sum of exponentials of
the eigenvalues [24]. On the other hand, the number of connected components in the network can
be calculated by the number of zero eigenvalues of its Laplacian matrix [48], which can also be
viewed as an eigen-function of the network.

It is worth noting that the connectivity measure defined in Equation (1) can also be extended to
measure the local connectivity of a subset of nodes T , where we define f (π ) > 0 iff π is incident
to the node set T . Local connectivity plays an important role when the connectivity analysis is
targeted on a specific subset of nodes. For example, in the targeted immunization scenario, the key
goal is to protect the selected target entities from disease infection. Constrained by the budget, we
may only allowed to cut part of the contagious connections around the target entities. In this
setting, it is crucial to identify key connections within the budget so that the connectivity of the
target entities is minimized.

2.2 Network Connectivity Minimization

With the network connectivity measure in Equation (1), we formally define NETCOMproblem as
follows.

Problem 1. Network Connectivity Minimization

Given: (1) a network G, (2) a connectivity mapping function f : π → R+ which defines C (G ), (3)

a type of network operation (node deletion vs. edge deletion), and (4) an integer budget k with 1 <
k < min {|Sπ |,K }, where Sπ = {π | f (π ) > 0} denotes the set of valid subgraphs and K denotes the

number of valid network elements.

Output: a set of network elements X of size k , whose removal from G would minimize connectivity

C (G ).

It is worth noting that depending on the definition of C (G ), the valid subgraphs in Sπ may
have various structures. In the triangle minimization scenario, Sπ contains all the triangles in
the network. When the valid subgraph shares the same form as the operation type (i.e., a valid
subgraph is a single node in node-level operation scenario, or a valid subgraph is an edge in edge-
level operation scenario), we call this kind of valid subgraphs as singletons. In Problem 1, we also
require that the budget 1 < k < min {|Sπ |,K }. This is a fairly generic constraint which can be
easily met. For example, for the node deletion operation, the set of valid network elements is
simply the entire node set of the input network (i.e., K = n); for a connected network with its
connectivity measure C (G ) defined as the path capacity, we have that |Sπ | > n. Therefore, the
above constraint simply means that we cannot delete all the nodes from the input network, which
would make the problem trivial. On the other end of the spectrum, we require that the budgetk > 1.
Otherwise (with k = 1), the problem can be easily solved in polynomial time (e.g., by choosing the
valid network element with the largest impact score). Problem 1 provides a general definition of
the NETCOMproblem, which can be in turn instantiated into different instances, depending on
(1) the specific choice of the connectivity measure C (G ) (or equivalently the choice of the f ()
function), and (2) the type of network operation (node deletion vs. edge deletion). For example, in
the robustness analysis of the power grid, we might choose the natural connectivity as C (G ) to
evaluate the robustness of the system, and we are interested in identifying k most critical power
transmission lines whose failure would cause a cascading failure of the entire grid. To abstract it
as a NETCOMproblem, we have the input network set as the topological structure of the power
grid; the connectivity to optimize as the natural connectivity; the operation type as edge deletion;
and the valid network elements as all the edges (i.e., K =m in this case).
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The NETCOM problem can be easily extended to local connectivity measures. Specifically, the
local connectivity minimization problem can be defined as follows.

Problem 2. Local Connectivity Minimization

Given: (1) a network G, (2) a subset of target nodes T , (3) a connectivity mapping function f : π →
R+ which defines the local connectivity measureCT (G ), (4) a type of network operation (node deletion

vs. edge deletion), and (5) an integer budget k with 1 < k < min {|Sπ |,K }, where Sπ = {π | f (π ) > 0}
denotes the set of valid subgraphs and K denotes the number of valid network elements.

Output: a set of network elements X of size k with X ∩ T = Φ, whose removal from G would mini-

mize connectivity CT (G ).

Note that in Problem 2, the restriction X ∩ T = Φ on X is used to avoid the trivial solution
under node deletion operations, in which target nodes T are removed for local connectivity
minimization.

2.3 Greedy Strategy for NETCOM

Due to the combinatorial nature of Problem 1, it is computationally infeasible to solve it in a brute-
force manner. Thanks to the diminishing returns property of NETCOM, the greedy strategy has
become a prevalent choice for solving Problem 1 with a guaranteed (1 − 1/e ) approximation ratio.
For the ease of following discussions, we present the outline of such greedy strategy in Algorithm 1.
In Algorithm 1, the solution set X is initialized with an empty set. At each iteration (steps 2–8),
the element (a node or an edge) with the highest impact score is added to the solution set X until
the budget is reached. The returned solution set X in step 9 guarantees a (1 − 1/e ) approximation
ratio. For more details and proofs, please refer to [8].

ALGORITHM 1: A Generic Greedy Strategy for NETCOM [8]

Input: (1) A networkG; (2) a connectivity mapping function f : π → R+ which definesC (G ); (3)
a type of network operation and (4) a positive integer k

Output: a set of network elements X of size k .
1: initialize X to be empty
2: for i = 1 to k do

3: for each valid network element o in G do

4: calculate I (o) ← C (G ) −C (G \ {o})
5: end for

6: add the element õ = argmaxoI (o) to X
7: remove the element {õ} from network G
8: end for

9: return X

3 FUNDAMENTAL LIMITS

In this section, we start with detailing the theoretic challenges of the NETCOMproblem, and then
reveal two fundamental limits, including its hardness and its approximability.

3.1 Theoretic Challenges of NETCOM

The first theoretic challenge of NETCOM lies in its hardness. Since the NETCOM problem has
various instances, intuitively, the hardness of those instances might vary dramatically from one
to another. For example, if the elements in the valid subgraph set Sπ are all singletons w.r.t. the
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corresponding operation type (i.e., Sπ is the node set of the input network for the node-level op-
timization problem, or Sπ is the edge set for the edge-level optimization problem), we can simply
choose the top–k nodes/edges with the highest f (π ) scores, which immediately gives the optimal
solution. However, if NETCOM is instantiated as an edge minimization problem under node dele-
tion operations (i.e., the valid subgraph Sπ consists of all the edges, the valid network element
set is the entire node set), the problem would become the (weighted) max-k vertex cover problem,
which is known to be NP-hard. Such observations naturally give rise to the following question:
What is the key intrinsic property of valid subgraph set Sπ in conjunction with the network operation

type that determines whether or not the corresponding NETCOMinstance is polynomially solvable?

To date, the hardness of the general NETCOM problem has largely remained unvalidated, except
for a few special instances (see Section 6 for details). The second theoretic challenge of NETCOM
lies in its approximability. The greedy algorithm outlined in Section 2 has a provable (1 − 1/e ) ap-
proximation ratio [8]. However, we still do not know if such an approximation ratio is optimal. In
other words, it remains unknown if there exists any polynomial algorithm with an approximation
ratio better than (1 − 1/e ) for NETCOM.

3.2 Fundamental Limit #1: NP-Hardness

We reveal the hardness result of the NETCOM problem in Theorem 1. It states that the NETCOM
problem defined in Problem 1 are in general NP-hard, unless the valid subgraphs in set Sπ are
mutually independent to each other2.

Theorem 1 [Np-Hardness of Netcom]. The NETCOM problem with non-independent valid sub-

graphs in Problem 1 is NP-hard.

Proof. As NETCOM problem admits two possible network operations, including node dele-
tions and edge deletions, we present our proof for each scenario in the following two lemmas.
Lemma 1 together with Lemma 2 would prove that NETCOM problem is NP-hard. �

Lemma 1. The k-node connectivity minimization problem is NP-hard.

Proof. By Equation (1), the connectivity of network G is defined as C (G ) =
∑

π ∈G f (π ). We
have function f defined as

f (π ) =

{
wπ > 0 if π is a valid subgraph
0 otherwise.

(2)

Hence, we formulate the k-node minimization problem as follows. �

Problem 3. k-Node Minimization Problem: NodeMin(G,k )

Given: (1) A network G =< V ,E >; (2) the connectivity function f as defined in Equation (2); and

(3) the budget k .

Output: A set withk nodesV ′ ⊆ V , such thatC (G \V ′) (i.e., the connectivity inG \V ′) is minimized.

Here we prove that NodeMin(G,k ) is NP-hard by constructing a polynomial reduction from a
well-known NP-hard problem, the max k-coverage problem (MaxCover (n,m,k )) [27]. The max
k-coverage problem MaxCover (n,m,k ) is defined as follows.

Problem 4. Max k-Coverage Problem: MaxCover (n,m,k )
Given: (1) the universal set of n elements U = {e1, e2, . . . , en }; (2) a collection S = {B1, . . . ,Bm }
of m distinct subsets of U , which are not mutually exclusive; (3) the non-negative weights W =

{wi , . . . ,wn } associated to the corresponding elements inU ; and (4) a positive integer k .

2Two valid subgraphs are independent to each other if they do not have common valid network element.
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Fig. 1. An illustration of polynomial reduction from Max k-Coverage problem.

Output: A set S′ ⊆ S with |S′| ≤ k , s.t.
∑

ei ∈U′wi is maximized, where U′ is the set of elements

covered by the sets in S′.

We aim to prove that MaxCover (n,m,k ) is polynomially reducible to NodeMin(G,k ) (or equiv-
alently MaxCover (n,m,k ) ≤p NodeMin(G,k )). Without loss of generality, we assume that 1 <
k < m. The rationality behind this assumption is that when k = 1, MaxCover (n,m, 1) can be triv-
ially solved by picking the set in S that contains the elements with the largest weight sum (i.e.
S’={arg maxB∈S

∑
ei ∈Bwi }); while for k ≥ m, we may just take all the subsets in S into S’ to guar-

antee a maximum coverage.
Given an instance of MaxCover (n,m,k ) with 1 < k < m, we can construct a network G withm

nodes, each corresponds to one subset in S. For each element ei in MaxCover (n,m,k ), we con-
struct a valid subgraphGi as follows. First, we scan set S and obtain all the sets {Bi

1, . . . ,Bi
l
} ⊆ S

that contain element ei . Then we map {Bi
1, . . . ,Bi

l
} into the nodes inG and get the corresponding

l nodes. By connecting those l node with edges, we get a subgraphGi inG with connectivity score
f (Gi ) = wi . In this way, removing any nodes fromGi would break the subgraph completeness. Re-
peating the above process for all the elements in U , the final graph we get is G = G1 ∪ . . . ∪Gn ,
and the connectivity function is defined as f (Gi ) = wi . Since the sets in S are distinct and not mu-
tually exclusive, the resulting valid subgraphs are guaranteed to be non-independent. Therefore,
the solution of MaxCover (n,m,k ) would be equivalent to the solution of NodeMin(G,k ), which
completes the proof.

Figure 1 gives an illustration of the reduction from an instance of MaxCover (n,m,k ) to an
instance of NodeMin(G,k ), in which different valid subgraphs are marked with different colors.
Edges with multiple colors indicate that they are involved in multiple valid subgraphs.

Lemma 2. The k-edge connectivity minimization is NP-hard.

Proof. We still use the connectivity measure defined Equation (2) to complete the proof. The
corresponding k-edge minimization problem can be defined as follows. �

Problem 5. k-Edge Minimization Problem (EdдeMin(G,k ))
Given: (1) A network G =< V ,E >; (2) the connectivity function f as defined in Equation (2); and

(3) the budget k .

Output: A set with k edges E ′ ⊆ E, such thatC (G \ E ′) (i.e., the connectivity inG \ E ′) is minimized.

We prove that EdдeMin(G,k ) is NP-hard by constructing a polynomial reduction from the
MaxCover (n,m,k ) problem. Similar to the rationale in the previous proof, we assume that 1 <
k < m.

Given an instance of MaxCover (n,m,k ), we construct am-edge star-shaped networkG (i.e., all
the m edges share one common endpoint). Specifically, each subset in S corresponds to an edge
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in G and each element ei in U represents a valid subgraph Gi in the connectivity function. To
construct subgraph Gi , we first locate all the subsets in S that contain element ei , and map them
into the corresponding edges inG. Then the sub-star formed by those edges can be viewed as a valid
subgraph Gi with f (Gi ) = wi . The removal of any edge from Gi would destroy the completeness
of the valid subgraph. Consequently, we have n valid subgraphs in G. Similarly, as the sets in S
are distinct and not mutually exclusive, the resulting valid subgraphs are guaranteed to be non-
independent. Therefore, the solution of MaxCover (n,m,k ) would be equivalent to the solution of
EdдeMin(G,k ), which completes the proof.

Figure 1 gives an illustration of the reduction from an instance of MaxCover (n,m,k ) to
EdдeMin(G,k ). Again, edges with multiple colors indicate their participation in multiple valid
subgraphs.

3.3 Fundamental Limit #2: Approximability

Based on the hardness result of NETCOM, we further reveal the approximability of NETCOM in
Theorem 2, which says that (1 − 1/e ) is indeed the best approximation ratio a polynomial algo-
rithm can achieve unless NP ⊆ DTIME(nO (log log n) ).

Theorem 2 [Approximability of Netcom]. (1 − 1/e ) is the best approximation ratio for

the NETCOM problem with non-independent valid subgraphs in polynomial time, unless NP ⊆
DTIME(nO (log log n) ).

Proof. We prove this by contradiction. In the proof of Theorem 1, we show that max k-
Coverage problem is polynomially reducible to the NETCOM problem, which implies that if there
is an α-approximation algorithm that can solve NETCOM in polynomial time with α > (1 − 1/e ),
there will be an α-approximation algorithm for max k-Coverage as well. However, it has been
proved in [26] that the maximum k-coverage problem can not be approximated with a factor bet-
ter than (1 − 1/e ) unless NP ⊆ DTIME(nO (log log n) ), which contradicts with our assumption. Hence,
we conclude that there is no polynomial algorithm for the NETCOM problem with an approxima-
tion ratio greater than (1 − 1/e ), unless NP ⊆ DTIME(nO (log log n) ). �

Since the greedy strategy in Algorithm 1 guarantees a (1 − 1/e ) approximation ratio, Theorem 2
implies that the greedy algorithm is the best polynomial algorithm for NETCOM in terms of its
approximation ratio unless NP ⊆ DTIME(nO (log log n) ).

4 ALGORITHM AND ANALYSIS

In this section, we start with detailing the algorithmic challenges of the NETCOMproblem, and
then present an effective algorithm, followed by some analysis in terms of its effectiveness and
efficiency.

4.1 Algorithmic Challenges of NETCOM

In the greedy strategy (Algorithm 1), a key step is to calculate the impact score of each network
element, i.e., I (o) = C (G ) −C (G \ {o}) (Step 4). As we have mentioned in Section 2, the network
connectivity measures C (G ) studied in this article can be calculated or well approximated by a
function of top-r eigenvalues of its adjacency matrix (i.e., C (G ) = F (Λ(r ) ), where F () is the func-
tion of eigenvalues). Therefore, the core step of calculating I (o) is to compute Λ(r ) on G \ {o},
which takes O (m) time (say using the classic Lanczos method). Consequently, simply recomput-
ing C (G \ {o}) for each network element from scratch would make the entire algorithm O (mn)
for node-level optimization problems and O (m2) for edge-level optimization problems, neither of
which is computationally feasible in large networks. To address this issue, existing literature often
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(a) Random (b) Node Deletion (c) Edge Deletion

Fig. 2. Illustrations and comparison of random perturbation matrix (a), which is dense and potentially full-

rank, vs. perturbation matrices by node deletion (b) and edge deletion (c), both of which are sparse and

low-rank.

resorts to matrix perturbation theory. Its key idea is to view the deletion of a network element o as
a perturbation to the original network (i.e., Ã = A + ΔA). Thus, the new eigenvalues (and hence
the new connectivity measure C (G \ {o})) can be approximated from the eigenvalues and eigen-
vectors of the original network in constant time, making the overall algorithm linear w.r.t. the size
of the input network [11, 12]. However, for networks with small eigen-gaps, the approximation
accuracy of matrix perturbation theory based methods might deteriorate quickly, if not collapse
at all. This issue might persist even if we switch to computationally more expensive high-order
matrix perturbation theory [11, 12]. Thus, the main algorithmic challenge is how to accurately
approximate the top-r eigenvalues of the input network after a node/edge deletion.

4.2 CONTAIN: The Proposed Algorithm

We propose a new updating algorithm for the top-r eigenvalues after node/edge deletion. In order
to maintain the linear complexity of the entire greedy algorithm, we seek to update the top-r
eigenvalues in constant time for each node/edge deletion operation.

Our key observation is as follows. In classic matrix perturbation theory (whether the first-order
matrix perturbation theory or its high-order variants), a fundamental assumption is that the pertur-
bation matrix ΔA is a random matrix whose spectrum is well-bounded as illustrated in Figure 2(a).
However, such assumption does not hold in the node/edge deletion scenario (Figure 2(b) and (c)),
in which the perturbation matrix ΔA is sparse and low-rank. Armed with this observation, we
propose an effective eigen-pair update algorithm for node/edge deletion based on partial-QR de-
composition. Unlike matrix perturbation based methods, which would inevitably introduce ap-
proximation error in the procedure, the proposed algorithm does not introduce any additional
error when computing the impact score I (o), and it runs in constant time for each node/edge
operation.

The proposed CONTAIN algorithm is presented in Algorithm 2. Overall, it follows the greedy
strategy (Algorithm 1). In detail, We first compute the top-r eigen-pairs of the network and com-
pute the connectivity score of the original network (steps 2 and 3). From step 4 to step 19, we
iteratively select the element with the highest impact score. When evaluating the impact of each
valid element, we first construct the perturbation matrix ΔA for the corresponding element and
then perform eigen decomposition on it (steps 6 and 7). Particularly, for node deletion operation,
suppose the removed node v has a set of neighbor nodes Nv . Then the resulting perturbation
matrix ΔA has ΔA(v,Nv ) = ΔA(Nv ,v ) = −1, which is a rank-2 sparse matrix. Therefore, UΔ and
ΛΔ can be directly expressed as an n × 2 matrix and a 2 × 2 matrix respectively. Moreover, let
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ALGORITHM 2: The CONTAIN Algorithm

Input: (1) The adjacency matrix of the network A; (2) the associated eigen-function F () for con-
nectivityC (G ); (3) rank r ; (4) the network operation (node vs. edge deletion); and (5) a positive
integer k .

Output: a set of network elements X of size k .
1: initialize X to be empty
2: compute [U(r ),Λ(r )]←top-r eigen-pairs of matrix A

3: compute C (G ) ← F (Λ(r ) )
4: for i = 1 to k do

5: for each valid element o in G do

6: ΔA← the perturbation matrix by element o’s deletion
7: [UΔ,ΛΔ]←eigen-pairs of ΔA

8: R←upper triangular matrix from [U(r ),UΔ]’s partial-QR decomposition
9: Λz ← eigenvalues of Z = R[Λ(r ), 0; 0,ΛΔ]R′

10: compute I (o) ← C (G ) − F (Λz )
11: end for

12: add õ = argmaxoI (o) to X
13: update C (G ) ← C (G ) − I (õ) and set I (õ) ← −1
14: ΔA← the perturbation matrix by element õ’s deletion
15: [UΔ,ΛΔ]← eigen-pairs of ΔA

16: [Q,R]← partial-QR decomposition of [U(r ),UΔ]
17: [Uz ,Λz]← eigen-pairs of Z = R[Λ(r ), 0; 0,ΛΔ]R′

18: update U(r ) ← (QUz ) (r ) , Λ(r ) ← Λ(r )
z , A← A + ΔA

19: end for

20: return X

nv = |Nv |, the non-zero entries in the eigenvector matrix of ΔA are

UΔ(v, 1) =
1
√

2
, UΔ(v, 2) =

1
√

2
(3)

UΔ(Nv , 1) = − 1
√

2nv

, UΔ(Nv , 2) =
1
√

2nv

and the eigenvalue matrix of ΔA is

ΛΔ =

[√
nv 0
0 −√nv

]
. (4)

In the edge deletion scenario, the perturbation matrix ΔA corresponding to the removal of edge
〈u,v〉 has only two non-zero entries ΔA(u,v ) = ΔA(v,u) = −1 and u � v , which is also a rank-2
matrix. Then, the only non-zero entries in UΔ are

UΔ(u, 1) =
1
√

2
, UΔ(u, 2) =

1
√

2
(5)

UΔ(v, 1) = − 1
√

2
, UΔ(v, 2) =

1
√

2
.

And the eigenvalue matrix ΛΔ is

ΛΔ =

[
1 0
0 −1

]
. (6)
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With the eigenvector matrix of ΔA, we proceed to perform partial-QR decomposition on [U(r ),UΔ]
in step 8. As U(r ) is already orthonormal, the Q matrix in the decomposition can be written as the
concatenation of U(r ) and two orthogonal vectors in unit length as follows

Q =

[
U(r ),

q1

‖q1‖
,

q2

‖q2‖

]
. (7)

By the Gram–Schmidt process, we have

q1 = UΔ(:, 1) − U(r )r1, (8)

q2 = UΔ(:, 2) − U(r )r2 + r′1r2
q1

‖q1‖2
,

where r1 = U(r ) ′UΔ(:, 1) and r2 = U(r ) ′UΔ(:, 2).
For node-level operations, we have

r1 = U(r ) ′UΔ(:, 1) =
1
√

2
(U(r ) (v, :) − 1

√
nv

∑
u ∈Nv

U(r ) (u, :))′,

r2 = U(r ) ′UΔ(:, 2) =
1
√

2
(U(r ) (v, :) +

1
√
nv

∑
u ∈Nv

U(r ) (u, :))′. (9)

While for edge-level operations, we have

r1 = U(r ) ′UΔ(:, 1) =
1
√

2
(U(r ) (u, :) − U(r ) (v, :))′, (10)

r2 = U(r ) ′UΔ(:, 2) =
1
√

2
(U(r ) (u, :) + U(r ) (v, :))′.

Correspondingly, the upper-triangular matrix R can be written as

R =

⎡⎢⎢⎢⎢⎢⎢⎣
I r1 r2

0 ‖q1‖ − r′1r2

‖q1 ‖
0 0 ‖q2‖

⎤⎥⎥⎥⎥⎥⎥⎦
(11)

By the definition of q1, q2 in Equation (8) together with the orthonormal property of the eigenvec-
tors, the norms of q1 and q2 can be computed indirectly with two r × 1 vectors r1 and r2 as

‖q1‖ =
√

1 − ‖r1‖2

‖q2‖ =

√
1 − ‖r2‖2 −

(r′1r2)2

1 − ‖r1‖2
. (12)

This enables us to compute ‖q1‖ and ‖q2‖ without explicitly constructing q1 and q2, which reduces
the cost of step 8 from O (nr ) to O (r ). It can be proved that by setting Z = R[Λ(r ), 0; 0,ΛΔ]R′,
the eigenvalues of Z are just the top eigenvalues of the perturbed matrix A + ΔA, and the top
eigenvectors of A + ΔA can be calculated by QUz (step 18). Therefore, we only need Λz to compute
the impact score of elemento (step 10). After scanning all the valid elements in the current network,
we choose the one with the largest impact score and add it to the element set X (steps 12 and 13).
Then, we update the network and its eigen-pairs (steps 14–18). The procedure to update eigen-
pairs is similar to that of computing the impact score for a given network element (steps 6–9),
with the following subtle difference. In order to just compute the impact score of a given network
element, we only need the updated eigenvalues. This is crucial as it saves the computation of (1)
constructing q1 and q2, (2) finding the eigenvectors of Z, and (3) updating the eigenvectors of
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perturbed matrix A + ΔA, which in turn helps maintain constant time complexity for each inner
for-loop (steps 5–11).

Algorithm 2 can be easily extended to address the local connectivity minimization problem by
properly approximate the local connectivity impact score at step 10. It is worth noting that for
some complex local connectivity measures like local natural connectivity or local length-t path
capacity, it is often time consuming to directly calculate local connectivity CT (G ) and element
impact IT (o) on CT (G ) than the global connectivity C (G ) and I (o). This is mainly because that
CT (G ) and IT (o) can not be directly calculated with the eigen-pairs of the network. To efficiently
address this problem, we propose the following heuristic to measure CT (G ) and IT (o).

Lemma 3. Local Impact Computation. Let C (G \ T ) and IG\T (o) denotes the global connectivity

of graphG \ T and impact of element o onC (G \ T ), thenCT (G ) = C (G ) −C (G \ T ), and IT (o) =
I (o) − IG\T (o).

Proof. The first equation naturally holds by the definition of connectivity measures. Here we
proceed to prove the second part. By the definition of IS (o), we have

IT (o) = CT (G ) −CT (G \ {o}).
By the fact that CT (G ) = C (G ) −C (G \ T ), the above equation can be re-write as

IT (o) = (C (G ) −C (G \ T )) − (C (G \ {o}) −C (G \ {o} ∪ T ) (13)

= (C (G ) −C (G \ {o})) − (C (G \ T ) −C (G \ {o} ∪ T )

= I (o) − IG\T (o).

�

4.3 Proof and Analysis

In this subsection, we analyze the proposed CONTAIN algorithm w.r.t. its effectiveness and
efficiency.

4.3.1 Effectiveness. The effectiveness of CONTAIN is summarized in Lemma 4, which says that
the computation of the impact score for each valid network element in the inner for-loop does not
introduce any extra approximation error.

Lemma 4 [Effectiveness of Contain]. Suppose A is approximated with its top-r eigen-pairs

with approximation error E (i.e., A = U(r )Λ(r )U(r ) ′ + E), then the Λz and QUz returned in Algorithm 2

can be used to approximate Ã as its top eigen-pairs with no extra error.

Proof. As A = U(r )Λ(r )U(r ) ′ + E and ΔA = UΔΛΔU′Δ, then Ã can be expressed as

Ã = U(r )Λ(r )U(r ) ′ + UΔΛΔU′Δ + E

= [U(r ),UΔ]

[
Λ(r ) 0

0 ΛΔ

]
[U(r ),UΔ]′ + E. (14)

Perform partial-QR decomposition on [U(r ),UΔ] as [U(r ),UΔ] = QR, we get orthonormal basis for
Ã and an upper triangular matrix R. Then the perturbed matrix Ã can be rewritten as

Ã = QR

[
Λ(r ) 0

0 ΛΔ

]
R′Q′ + E. (15)

Let Z = R[Λ(r ), 0; 0,ΛΔ]R′ and perform eigen decomposition on Z as Z = UzΛzU′z , Ã is now equiv-
alent to

Ã = QUzΛzU′zQ′ + E = (QUz )Λz (QUz )′ + E. (16)
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Since both Q and Uz are orthonormal, we have (QUz ) (QUz )′ = I. Thus, Λz and QUz can be viewed
as the top eigen-pairs of Ã. As the approximation error remains to be E in Equation (16), it implies
that no extra error is introduced in the procedure, which completes the proof. �

As the eigenvalues in real network are often skewed [20], the above impact scores can be ap-
proximated with top-r eigenvalues. Analysis in [51] and [6] show that the truncated approxima-
tions for triangle capacity and natural connectivity can achieve high accuracy with only top-50
eigenvalues, which enables a great acceleration on impact score approximation.

4.3.2 Efficiency. The complexity of the proposed CONTAIN algorithm is summarized in
Lemma 5, which says it is linear in both time and space.

Lemma 5 [Complexity of Contain]. The time complexity of CONTAIN for node-level connec-

tivity optimization is O (k (mr + nr 3)). The time complexity of CONTAIN for edge-level connectivity

optimization is O (k (mr 3 + nr 2)). The space complexity of CONTAIN is O (nr +m).

Proof. In the CONTAIN algorithm, computing top-r eigen-pairs and connectivityC (G ) would
takes O (nr 2 +mr ) and O (r ) respectively. To compute the impact score for each node/edge (steps
5–11), it takes O (dvr ) (dv is the degree of node v) for node v , and O (r ) for each edge to get the
upper triangular matrix R in step 8. Since performing eigen-decomposition on Z at step 9 takes
O (r 3), the complexity to collect impact scores for all the nodes/edges areO (nr 3 +mr ) andO (mr 3)
respectively. Picking out the node/edge with highest impact score in current iteration would cost
O (n) for node level operations and O (m) for edge level operations. At the end of the iteration,
updating the eigen-pairs of the network takes the complexity of O (nr 2 + r 3). As we have r � n,
the overall time complexity to select k nodes would be O (k (mr + nr 3)); and the complexity to
select k edges would be O (k (mr 3 + nr 2)).

For space complexity, it takesO (n +m) to store the entire network,O (nr ) to calculate and store
the top-r eigen-pair of the network, O (n) to store the impact scores for all the nodes in node level
optimization scenarios andO (m) to store the impact scores for all the edges, the eigen-pair update
requires a space ofO (nr ). Therefore, the overall space complexity for CONTAIN isO (nr +m). �

4.4 CONTAIN+: The Closed-form Heuristics

Here we provide the heuristics for the triangle capacity and natural connectivity optimization
problems, which can be easily extended to other similar connectivity measures.

4.4.1 Impact Approximation. For triangle capacity optimization, the impact of a node/edge is
the number of triangles that the node/edge participates in, which can be directly approximated
with the eigen-pairs of the current network.

Lemma 6 [Closed-Form Impact Score for Triangle Capacity]. Given a network G with ad-

jacency matrix A and eigen-pair (U,Λ). The number of triangles that node v participates in is I (v ) =∑n
i=1

λ3
i u2

i (v )

2 ; the number of triangles that edge 〈u,v〉 participates in is I (〈u,v〉) = ∑n
i=1 λ

2
i ui (u)ui (v ).

Proof. The first part of the lemma has been proved in [51]. Here we proceed to prove the second
part.

The number of triangles that edge 〈u,v〉 involves in equals to the number of length-2 paths
from node u to node v , which equals A2 (u,v ). As A = UΛU′, we have A2 = UΛ2U′. Therefore,
A2 (u,v ) =

∑n
i=1 λ

2
i ui (u)ui (v ). �

Lemma 7 [Closed-Form Impact Score for Natural Connectivity]. Given a network G with

adjacency matrix A and eigen-pair (U,Λ). The impact of node v on natural connectivity is I (v ) =∑n
i=1 e

λi u2
i (v ); the impact of edge 〈u,v〉 is I (〈u,v〉) = ∑n

i=1
eλi −1

λi
ui (u)ui (v ).
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Proof. Natural connectivity can be viewed as an aggregation of weighted closed-walks [24]. For
nodev , its impact on the number of length-t closed-walks is proportional to At (v,v ), so its overall

impact on natural connectivity can be expressed as I (v ) =
∑∞

j=0
Aj (v,v )

j ! . As we have A = UΛU′ and

Aj (v,v ) =
∑n

i=1 λ
j
i u

2
i (v ), we have

I (v ) =
∞∑

j=0

1

j!

n∑
i=1

λj
i u

2
i (v ) =

n∑
i=1

∞∑
j=1

1

j!
λj

i u
2
i (v ) (17)

=

n∑
i=1

eλi u2
i (v ).

For edge 〈u,v〉, the number of length-t closed-walks it participates in equals to the number
of length-(t − 1) walks from node u to node v , which can be expressed as At−1 (u,v ). There-

fore, its overall impact on natural connectivity can be written as I (〈u,v〉) = ∑∞j=1
Aj−1 (u,v )

j ! . Let

T =
∑∞

j=1
Aj−1

j ! , then we have

AT =

∞∑
j=1

Aj

j!
=

∞∑
j=0

Aj

j!
− I = eA − I.

Based on the above equation, we have

T = A−1 (eA − I) = UΛ−1U′(U(eΛ − I)U′) (18)

= UΛ−1 (eΛ − I)U′.

Thus, I (〈u,v〉) = T(u,v ) =
∑n

i=1
eλi −1

λi
ui (u)ui (v ). �

4.4.2 Effectiveness of CONTAIN+. As we have mentioned in the previous subsection, the impact
score of a node/edge is often approximated with the top-r eigen-pairs of the network. Let (U,Λ) be
the eigen-pairs of networkG, (Ũ, Λ̃) be the eigen-pairs of networkG \ {v}. To estimate the impact
of nodev on the connectivity of the network, CONTAIN needs to utilize the eigenvalues from both
the original network (i.e., Λ) and the perturbed network (i.e., Λ̃) for the calculation (Algorithm 2
step 10); while CONTAIN+ only relies on the eigen-pairs in the original network (i.e., (U,Λ)).
Take triangle capacity optimization under node operations as an example. the impact of node v

can be approximated as I (v )CONTAIN =
∑r

i=1
λ3

i

6 −
∑r

i=1
λ̃3

i

6 by CONTAIN; or it can be approximated

as I (v )CONTAIN+ =
∑r

i=1
λ3

i u2
i (v )

2 by CONTAIN+. Suppose the exact impact of node v is I (v )Exact ,
then we can define the approximation error of CONTAIN as errCONTAIN = I (v )Exact − I (v )CONTAIN

and the error of CONTAIN+ as errCONTAIN+ = I (v )Exact − I (v )CONTAIN+. In Lemma 8, we give the
analysis on errCONTAIN and errCONTAIN+.

Lemma 8. The error of CONTAIN with top-r eigen-pair based triangle capacity impact ap-

proximation is errCONTAIN =
∑n

i=r+1 λ3
i−λ̃3

i

6 ; the approximation error for CONTAIN+ is errCONTAIN+ =∑n
i=r+1

λ3
i u2

i (v )

2 .

Proof. As we have I (v )Exact =
∑n

i=1
λ3

i u2
i (v )

2 =
∑n

i=1 λ3
i−λ̃3

i

6 , Lemma 8 naturally holds when
I (v )CONTAIN and I (v )CONTAIN+ are subtracted from I (v )Exact , respectively. �

Lemma 8 implies that when the removed node has small effect to the bottom-(n − r ) eigen-
values of the underlying network, CONTAIN is preferred as errCONTAIN would be small.
While in networks with very skewed eigenvalue distributions, CONTAIN+ is preferred as the
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bottom-(n − r ) eigenvalues are small in magnitude. Similar analysis can be derived for edge-level
operation scenarios and natural connectivity optimization scenarios, which is omitted for brevity.

4.4.3 Complexity of CONTAIN+.

Theorem 3. The time complexity of CONTAIN+ for node level connectivity optimization isO (nr 2 +

mr + knr 2). The time complexity for edge level connectivity optimization isO (k (mr + nr 2)). The space

complexity of CONTAIN+ is O (nr +m).

Proof. The CONTAIN+ algorithm is generally similar to the CONTAIN algorithm except for
the node/edge impact calculation part. Therefore, CONTAIN+ also need to take O (nr 2 +mr ) to
compute the top-r eigen-pairs. In each iteration, it takes CONTAIN+ O (nr ) time to get all the
impact scores for each node or O (mr ) for the scores of each edge. After picking out the highest
impact node/edge with O (n) or O (m) complexity, we update the eigen-pairs of the network with
the method used in CONTAIN with O (nr 2 + r 3) complexity. Therefore, the overall complexity for
node level connectivity minimization isO (nr 2 +mr + knr 2) and the complexity for edge level con-
nectivity minimization is O (nr 2 +mr + k (mr + nr 2)), which can be simplified as O (k (mr + nr 2)).

As for the space complexity, CONTAIN+ also need space to store all the top-r eigen-pairs and
the impact scores for nodes/edges. Since no extra computation space is introduced in CONTAIN+
compared to CONTAIN, the overall space complexity for CONTAIN+ is still O (nr +m). �

5 EVALUATIONS

In this section, we evaluate the proposed CONTAIN algorithm. All experiments are designed to
answer the following two questions:

—Effectiveness. How effective is the proposed CONTAIN algorithm in minimizing various
connectivity measures?

—Efficiency. How efficient and scalable is the proposed CONTAIN algorithm?

5.1 Experiment Setup

5.1.1 Datasets. We perform experiments on 10 different datasets from 4 different domains, in-
cluding Airport: an air traffic network that represents the direct flight connections between inter-
nal US airports3; Oregon: an autonomous system network which depicts the information trans-
ferring relationship between routers from [32]; Chemical: a network based on [18] that shows
the similarity between different chemicals; Disease: a network that depicts the similarity between
different diseases [18]; Gene: a protein-protein interaction network based on [18]; Astrph: a col-
laboration network between authors whose papers were submitted to Astro Physics category on
Arxiv [33]; Hepth: a collaboration network between authors whose papers were submitted to
High Energy Physics (Theory category) on Arxiv [32]; Aminer: a collaboration network between
researchers in the Aminer datasets [49]; Eucore: the email correspondence network from a large
European research institution [33]; Fb: a social circle network collected from Facebook [39]; and
Youtube: a friendship network among youtube users [50]. The statistics of those datasets are listed
in Table 2.

5.1.2 Comparing Methods. We compare the proposed algorithm with the following methods.
(1) Degree: selecting top–k nodes (edges) with the largest degrees; specifically, for edge 〈u,v〉, let
du and dv denote the degrees for its endpoints, respectively, the score for 〈u,v〉 is min{du ,dv }4.

3http://www.levmuchnik.net/Content/Networks/NetworkData.html.
4We use min{du, dv } as edge score to ensure that both ends of the top ranked edges are high degree nodes.
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Table 2. Statistics of Datasets

Domain Dataset #Nodes #Edges Avg Degree

Infrastructure
Airport 2,833 7,602 5.37
Oregon 5,296 10,097 3.81

Biology
Chemical 6,026 69,109 22.94
Disease 4,256 30,551 14.36

Gene 7,604 14,071 3.7

Collaboration
Astrph 18,772 198,050 21.1
Hepth 9,877 25,985 5.26
Aminer 1,211,749 4,756,194 7.85

Social
Eucore 1,005 16,064 31.97

Fb 4,039 88,234 43.69
youtube 1,138,499 2,990,443 5.25

(2) PageRank: selecting top–k nodes (edges) with the largest PageRank scores [44] (the correspond-
ing edge score is the minimum PageRank score among its two endpoints); (3) Eigenvector: selecting
top–k nodes (edges) with the largest eigenvector centrality scores [43] (the corresponding edge
score is the minimum eigenvector centrality score among its endpoints); (4) Netshield/Netmelt:
selecting top–k nodes (edges) that minimize the leading eigenvalue of the network [11, 12]; (5)
MIOBI: a greedy algorithm that employs first-order matrix perturbation method to estimate ele-
ment impact score and update eigen-pairs [6]; (6) MIOBI-S: a variant of miobi that selects top–k
nodes (edges) in one batch without updating the eigen-pairs of the network; (7) MIOBI-H: a vari-
ant of miobi that employs high order matrix perturbation method to update eigen-pairs [10]; (8)
Exact: a greedy algorithm that recomputes the top-r eigen-pairs to estimate the impact score for
each candidate node/edge. It is worth to note that the NetShield/NetMelt, MIOBI, and CONTAIN al-
gorithms are all based on the greedy algorithm, which has the same approximation ratio in theory.
The main difference lies in their accuracy to approximate the perturbed eigen-pairs.

For the results reported in this article, we set rank r = 80 for all the top–r eigen-pairs based
approximation methods (methods (5)–(8) and the proposed CONTAIN method).

5.1.3 Evaluation Metrics. The performance of the algorithm is evaluated by the impact of its
selected elements I (X) = C (G ) −C (G \ X). The larger the I (X) is, the more effective the algorithm
is. For a given dataset, connectivity measure and network operation, we normalize I (X) by that of
the best method, so that the results in different datasets are comparable in the same plot.

5.1.4 Machine and Repeatability. All the experiments in the article are performed on a machine
with 2 processors (Intel Xeon 3.5 GHz) with 256 GB of RAM. The algorithms are programmed with
MATLAB using a single thread.

5.2 Effectiveness

5.2.1 Effectiveness of CONTAIN and CONTAIN+. We compare the proposed algorithm and the
baseline methods on three connectivity measures (leading eigenvalue, number of triangles, and
natural connectivity) by both node-level operations and edge-level operations on all datasets in
our experiment. Since the Exact method needs to recompute the top-r eigen-pairs for each candi-
date node/edge which is very time-consuming, its results would be absent on some large datasets
(e.g., Aminier and Astrph) where it does not finish the computation within 24 hours. In our
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(a) Node operations. (b) Edge operations.

Fig. 3. The optimization results on the number of local triangles on the chemical dataset.

Fig. 4. The optimization results on leading eigenvalue with node-level operations.

Fig. 5. The optimization results on the number of triangles with node-level operations.

experiment, the budget for node-level operations is k = 20, the budget for edge-level operations
is k = 200. The results are shown from Figure 4 to Figure 9.5 Specifically, the Y-axis is the im-
pact score achieved by the method normalized by the maximum impact score among all meth-
ods on the same dataset. We can see that the proposed CONTAIN (the red solid bar) and CON-
TAIN+ (the red hollow bar) (1) are very close to the Exact method (the black hollow bar); and
(2) consistently outperforms all the other alternative methods. In the meanwhile, the proposed
CONTAIN and CONTAIN+ algorithms are much faster than Exact, as will shown in the next
subsection.

5The impact of Degree and PageRank method on leading eigenvalue and natural connectivity in Chemical and Aminer
datasets are nearly zero.
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Fig. 6. The optimization results on natural connectivity with node-level operations.

Fig. 7. The optimization results on leading eigenvalue with edge-level operations.

Fig. 8. The optimization results on the number of triangles with edge-level operations.

Fig. 9. The optimization results on natural connectivity with edge-level operations.

To study the effectiveness of CONTAIN and CONTAIN+ for the local connectivity minimization
problem. We experiment on the Chemical data and compare the performance of different methods
for minimizing the local triangle capacity in the network. From Figure 3, it is obvious to see that
both CONTAIN and CONTAIN+ can achieve similar performance with the Exact algorithm and
outperform all other heuristic methods.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 53. Publication date: April 2021.



53:20 C. Chen et al.

(a) Node operations. (b) Edge operations.

Fig. 10. The effect of r on optimizing the number of triangles on chemical dataset.

Table 3. Time Complexity Comparison for Node Operations

Degree PageRank Eigenvector NetShield MIOBI Exact CONTAIN

Time
Complexity

O (m + nk ) O (m + nk ) O (m + nk ) O (m + nk2 ) O (k (mr + nr 2 )) O (k (n2r 2 + nmr )) O (k (mr + nr 3 ))

Table 4. Time Complexity Comparison for Edge Operations

Degree PageRank Eigenvector NetMelt MIOBI Exact CONTAIN

Time
Complexity

O (mk ) O (mk ) O (mk ) O (n +mk ) O (k (mr + nr 2 )) O (k (nmr 2 +m2r )) O (k (mr 3 + nr 2 ))

5.2.2 Effect of Rank r . The main parameter that affects the performance of CONTAIN is the
rank r . To study the effect of r , we change r from 5 to 80 to minimize the number of triangles on
the chemical dataset and compare them with the Exact method. The results are shown in Figure 10.
From Figure 10, it is obvious to see that as r increases, the performance of CONTAIN increases
accordingly, which is consistent with our effectiveness analysis. With r = 80, the performance of
CONTAIN is very close to the Exact method with different k .

5.3 Efficiency

5.3.1 Efficiency of CONTAIN. In Tables 3 and 4, we have compared the time complexity of
all the methods in its base versions and we assume the budge k < logn for node operations and
k < logm for edge operations.

With that, we have compared the quality vs. running time trade-off of different methods for
optimizing the natural connectivity (the most complicated connectivity measure) on the chemical
dataset as presented in Figure 11. In both node-level and edge-level optimization scenarios, the
proposed CONTAIN achieves a very similar performance as Exact. In terms of the running time,
CONTAIN is orders of magnitude faster than Exact. Although the running time of other baseline
methods is similar to CONTAIN, their performance (y-axis) is not as good as CONTAIN.
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(a) Node operations (b) Edge operations

Fig. 11. The quality vs. running time trade-off on chemical. The budget for node operations is k = 20, the

budget for edge operations is k = 200.

(a) Node operations (b) Edge operations

Fig. 12. The running time comparison between CONTAIN and CONTAIN+ on the chemical dataset. The

budget for both node and edge operations is k = 20.

5.3.2 Efficiency of CONTAIN+. To justify the efficiency of CONTAIN+, we compare the run-
ning time of CONTAIN and CONTAIN+ on the Chemical dataset in Figure 12. We can see that
the running time of CONTAIN+ is orders of magnitudes faster than the CONTAIN algorithm.
Moreover, as rank r increases, the running time of CONTAIN would increase in polynomial order
due to the eigen-decomposition operation for node/edge impact score approximation; while the
running time of CONTAIN+ only shows a slightly linear increase across different rank settings.

5.3.3 Scalability of CONTAIN. The scalability results of CONTAIN are presented in Figure 13.
As we can see, the proposed CONTAIN algorithm scales linearly w.r.t. the size of the input network
(i.e., both the number of nodes and edges), which is consistent with Lemma 5.

6 RELATED WORK

In this section, we review the related literature from the following two perspectives, including
(a) connectivity measures, (b) NETCOMalgorithms, and (c) applications.

Connectivity Measures. At the macro-level, network connectivity can be viewed as a mea-
sure to evaluate how well the nodes are connected together. Examples include the size of giant
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(a) Node operations (b) Edge operations

Fig. 13. The scalability of CONTAIN performed on Astrph. The budget for both operations is k = 20.

connected component [4], graph diameter [1], the mixing time [22], the vulnerability measure [2],
and the clustering coefficient [52]. At the micro-view level, network connectivity measures the
capacity of edges, paths, loops, some complex motifs [40], or even the centrality of the nodes.
Examples include the epidemic threshold [5], the natural connectivity (i.e., the robustness) [24],
degree centrality [21], and total pair-wise connectivity [19].

Connectivity Optimization Algorithms. State-of-the-art algorithms for NETCOMare almost
exclusively designed for a specific connectivity measure and/or with a specific network operation
(node deletion vs. edge deletion). To name a few, Chen et al. have proposed both node-level and
edge-level manipulation strategies to optimize leading eigenvalue and proved that the correspond-
ing node-level optimization problem is NP-hard in [12] and [11], respectively. On the other hand,
Le et al. have proposed an algorithm to minimize the leading eigenvalue for networks with small
eigen-gaps in [30]. In [37], Li et al. show that both node-level and edge-level triangle minimization
problem is NP-hard and have proposed several heuristic strategies for the triangle minimization
problem. In [6] and [7], Chan et al. study the optimization problem for network robustness without
analyzing its hardness. In [46], Shen et al. study the optimization problem for total pair-wise con-
nectivity. In order to effectively and efficiently compute the impact scores of network elements, the
proposed CONTAIN algorithm resorts to partial-QR decomposition, which has been successfully
used in several dynamic network mining tasks [16, 23, 35, 36].

Applications. The connectivity of the network has played an important role in many appli-
cations. For the applications that focus on system-level studies, global connectivity measures
are more commonly used. In the immunization studies [17], it is critical to select a group of
nodes/edges to effectively contain the propagation process [10, 12]. In the biomedical domain, an-
tibiotic drugs are developed to kill the bacteria by disrupting their molecular network to the max
extend [28]. While in [38], connectivity optimization methods have been applied on the protein–
protein interaction network to identity critical proteins in the network. In the critical infrastructure
networks, facilities that may cause large-scale failures are retrieved and protected proactively to
ensure the full-functioning of the entire system [13]. It is worth noting that finding a group of
nodes/edges that have high impact on the connectivity of the network is similar to the influence
maximization problem [15, 25, 41] and its variations (e.g., viral marketing [14, 31], outbreak detec-
tion [34], etc). The main difference between the two problems is that the influence maximization
problem is highly dependent on the underlying diffusion model (e.g., independent cascade, linear
threshold [25]), while the connectivity optimization problem is directly based on the backbone
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(i.e., the underlying topology) of the network. In addition to the global connectivity measures, the
local connectivity of the network has also been applied to some critical tasks like graph cluster-
ing [53, 54] and link prediction [3].

7 CONCLUSIONS

In this article, we study the network connectivity minimization problem by addressing two open
challenges. On the theoretic side, we prove that a wide range of NETCOMproblems are NP-hard
and (1 − 1/e ) is the best approximation ratio that a polynomial algorithm can achieve for NETCOM
problems unless NP ⊆ DTIME (nO (log log n) ). On the algorithmic aspect, we propose an effective,
scalable and generalizable algorithm CONTAIN and its closed-form variant CONTAIN+. Extensive
experimental evaluations on a variety of real networks demonstrate that the proposed algorithm
(1) consistently outperforms alternative methods, and (2) scales linearly w.r.t. the network size.
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