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Abstract—Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in

many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems

are referred to asmulti-layered networks, and have been used to characterize various complex systems, including critical infrastructure

networks, cyber-physical systems, collaboration platforms, biological systems, and many more. Different from single-layered networks

where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to

disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To

manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with

specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a

family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the

connectivity measures in the SUBLINE family enjoy diminishing returns property, which guarantees a near-optimal solution with linear

complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its

effectiveness and efficiency.

Index Terms—Network connectivity, multi-layered networks
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1 INTRODUCTION

NETWORKS naturally arise from many high impact
domains. Moreover, the cross-domain interactions

between networks are frequently observed in many appli-
cations. The resulting inter-dependent networks naturally
form a type of multi-layered networks [1], [2], [3], [4]. Criti-
cal infrastructure system is a classic example for multi-
layered network as shown in Fig. 1. In this system, the
power stations in the power grid are used to provide elec-
tricity to routers in the autonomous system network (AS
network) and vehicles in the transportation network;
while the AS network in turn is needed to provide com-
munication mechanisms to keep power grid and trans-
portation network work in order. On the other hand, for
some coal-fired or gas-fired power stations, a well-func-
tioning transportation network is required to supply fuel
for those power stations. Therefore, the inter-dependent
three layers in the system form a triangular dependency
network. Another example is the organization-level col-
laboration platform, where the team network is supported
by the social network, connecting its employee pool, which
further interacts with the information network, linking to
its knowledge base. Furthermore, the social network layer
could have an embedded multi-layered structure (e.g.,
each of its layers represents a different collaboration type

among different individuals); and so does the information
network. In this application, the different layers form a
tree-structured dependency network rooted on the team
network layer.

Different from single-layered networks, multi-layered
networks are more vulnerable to external attacks because
their nodes can be affected by both within-layer connec-
tions and cross-layer dependencies. That is, even a small
disturbance in one layer/network may be amplified in all
its dependent networks through cross-layer dependen-
cies, and cause cascade failure to the entire system. For
example, when the supporting facilities (e.g., power sta-
tions) in a metropolitan area are destroyed by natural dis-
asters like hurricanes or earthquakes, the resulting
blackout would not only put tens of thousands of people
in dark for a long time, but also paralyze the telecom net-
work and cause a great interruption on the transportation
network. Therefore, it is of key importance to identify
crucial nodes in the supporting layer/network, whose
loss would lead to a catastrophic failure of the entire sys-
tem, so that counter measures can be taken proactively.
On the other hand, accessibility issues extensively exist in
multi-layered network mining tasks. To manipulate the
connectivity in layers with limited accessibility, one can
only operate via the nodes from accessible layers that
have large impact to target layers. Taking the multi-lay-
ered network depicted in Fig. 2a for example, assume
that the only accessible layer in the system is the control
layer and the goal is to minimize the connectivity in the
satellite communication layer and physical layer simulta-
neously under k attacks, the only strategy we could adopt
is to select a set of k nodes from the control layer, whose
failure would cause largest reduction on the connectivity
of the two target layers.

� The authors are with Arizona State University, Tempe, AZ 85281.
E-mail: {chen_chen, jingrui.he, nadya.bliss, hanghang.tong}@asu.edu.

Manuscript received 12 Sept. 2016; revised 2 June 2017; accepted 12 June
2017. Date of publication 23 June 2017; date of current version 8 Sept. 2017.
(Corresponding author: Chen Chen.)
Recommended for acceptance by L.B. Holder.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2719026

2332 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 10, OCTOBER 2017

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



To tackle the connectivity optimization1 problem inmulti-
layered networks, great efforts have been made from differ-
ent research area for manipulating two-layered interdepen-
dent network systems [1], [2], [4], [5], [6]. Although much
progress has been made, two key challenges have largely
remained open. First (connectivity measures), there does not
exist one single network connectivity measure that is supe-
rior to all other measures; but rather several connectivity
measures are prevalent in the literature (e.g., robustness [7],
vulnerability [8], triangle counts). Each of the existing opti-
mization algorithms on multi-layered networks is tailored
for one specific connectivitymeasure. It is not clear if an algo-
rithm designed for one specific connectivity measure is still
applicable to othermeasures. So how canwedesign a generic
optimization strategy that applies to a variety of prevalent
network connectivity measures? Second (connectivity optimi-
zation), an optimization strategy tailored for two-layered net-
works might be sub-optimal, or even misleading to multi-
layered networks, e.g., in case we want to simultaneously
optimize the connectivity inmultiple layers bymanipulating
one common supporting layer. On the theoretic side, the
optimality of the connectivity optimization problem of
generic multi-layered networks is largely unknown.

This paper aims to address all these challenges, and the
main contributions can be summarized as

� Connectivity Measures. We unify a family of prevalent
network connectivity measures (SUBLINE), which are
in close relation to a variety of important network
parameters (e.g., epidemic threshold, network
robustness, triangle capacity).

� Connectivity Optimization. We show that for any net-
work connectivity measures in the SUBLINE family,
the connectivity optimization problem with the pro-
posed MULAN model enjoys the diminishing returns
property, which naturally lends itself to a family of
provable near-optimal optimization algorithms with
linear complexity.

� Empirical Evaluations. We perform extensive experi-
ments based on real data sets to validate the effec-
tiveness and efficiency of the proposed algorithms.

The rest of the paper is organized as follows: Section 2
provides the background of multi-layered network model
(MULAN). Section 3 gives the definition of a set of unified

connectivity measures (SUBLINE) and some of its examples. In
Section 4, we define the connectivity optimization problem
inmulti-layered network and propose its solutions. Section 5
evaluates the proposed algorithms. Section 6 briefly introdu-
ces related work on network connectivity and multi-layered
network. Section 7 concludes thewhole paper.

2 THE MULTI-LAYERED NETWORK MODEL

In this section, we introduce the multi-layered network
model that admits an arbitrary number of layers with arbi-
trary dependency structure among different layers. We start
with the main symbols used throughout the paper (Table 1).
We use bold upper case letters for matrices (e.g., A, B), bold
lower case letters for column vectors (e.g., a, b) and calli-
graphic font for sets (e.g., A, B). The transpose of a matrix is
denoted with a prime, i.e., A0 is the transpose of matrix A.

With the above notation, we use the following definition
of multi-layered networks as in [9].

Definition 1 (A Multi-layered Network Model
(MULAN)). Given (1) a binary g� g abstract layer-layer
dependency network G, where Gði; jÞ ¼ 1 indicates layer-j
depends on layer-i (or layer-i supports layer-j), Gði; jÞ ¼ 0
means that there is no direct dependency from layer-i to layer-
j; (2) a set of within-layer adjacency matrices A ¼ fA1; . . . ;
Agg; (3) a set of cross-layer node-node dependency matrices D,
indexed by pair ði; jÞ, i; j 2 ½1; . . . ; g�, such that for a pair ði; jÞ,
if Gði; jÞ ¼ 1, then Dði;jÞ is a ni � nj matrix; otherwise
Dði;jÞ ¼ F (i.e., an empty set); (4) u is a one-to-one mapping
function that maps each node in layer-layer dependency net-
work G to the corresponding within-layer adjacency matrix
Ai ði ¼ 1; . . . ; gÞ; (5) ’ is another one-to-one mapping function
that maps each edge in G to the corresponding cross-layer
node-node dependency matrix Dði;jÞ. We define a multi-layered
network as a quintuple G ¼<G;A;D; u;’> .

For simplicity, we restrict the within-layer adjacency
matrices Ai to be simple (i.e., no self-loops), symmetric and
binary; and the extension to the weighted, asymmetric case
is straightforward. In this paper, we require cross-layer
dependency network G to be an un-weighted graph with
arbitrary dependency structure. Notice that compared with
the existing pair-wise two-layered models, MULAN allows a
much more flexible and complicated dependency structure
among different layers. For the cross-layer node-node
dependency matrix Dði;jÞ, Dði;jÞðs; tÞ ¼ 1 indicates that node
s in layer i supports node t in layer j.

Fig. 2a presents an example of a four-layered network. In
this example, layer-1 (e.g., the control layer) is the support-
ing layer (i.e., the root node in the layer-layer dependency
network G). Layer-2 and layer-3 directly depend on layer-1
(e.g., one represents a communication layer by satellites and
the other represents another communication layer in land-
lines, respectively), while layer-4 (e.g., the physical layer)
depends on both communication layers (layer-2 and layer-
3). The abstracted layer-layer dependency network (G) is
shown in Fig. 2b. A ¼ fA1;A2;A3;A4g denotes the within-
layer adjacency matrices, each of which describes the net-
work topology in the corresponding layer. In this example,
D is a set of matrices containing only four non-empty matri-
ces: Dð1;2Þ, Dð1;3Þ, Dð2;4Þ, and Dð3;4Þ. For example, Dð3;4Þ
describes the node-node dependency between layer-3 and
layer-4. The one-to-one mapping function u maps node 1
(i.e., Layer 1) in G to the within-layer adjacency matrix of

Fig. 1. A simplified example of multi-layered network.

1. In this paper, connectivity optimization problem is defined as
minimizing the connectivity of a target layer by removing a fixed num-
ber of nodes in the control layer (refer to the detailed definition in
Section 4).
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layer-1 (A1); and the one-to-one mapping function ’ maps
edge <3; 4> inG to the cross-layer node-node dependency
matrixDð3;4Þ as shown in Fig. 2b.

3 UNIFICATION OF CONNECTIVITY MEASURES

In this section, we present a unified view for a variety of
prevalent network connectivity measures.

3.1 Introducing SUBLINE Family
The key of our unified connectivity measure (referred to as
SUBLINE in this paper) is to view the connectivity of the
entire network as an aggregation over the connectivity
measures of its sub-networks (e.g., subgraphs), that is

CðAÞ ¼
X
p�A

fðpÞ; (1)

where p is a subgraph of A. The non-negative function
f : p! Rþ maps any subgraph in A to a non-negative real
number and fðfÞ ¼ 0 for empty set f. In other words, we
view the connectivity of the entire network (CðAÞ) as the
sum of the connectivity of all the subgraphs (fðpÞ). Based
on such connectivity definition, we further define the
impact function of a given set of nodes S as follows:

IðSÞ ¼ CðAÞ � CðA n SÞ; (2)

where A n S is the residual network after removing node set
S from the original network A.

In multi-layered networks, as the functionality of each
node depends on (1) the well-functioning of its depended
node(s) and (2) its within-layer connections, the impact of
node set Si on the connectivity of layer-j can be quantified
as the impact of all its dependents (either directly or indi-
rectly) on the connectivity of layer-j (i.e., IðSi!jÞ). In the
example in Fig. 2a, the impact of S1 on layer-4 is
IðS1!4Þ ¼ IððS1!2Þ2!4 [ ðS1!3Þ3!4Þ. Based on Eq. (2), we
can define the overall impact of node set Si in Ai on the
multi-layered network system as

IðSiÞ ¼
Xg
j¼1

ajIðSi!jÞ ¼
Xg
j¼1

ajðCðAjÞ � CðAj n Si!jÞÞ; (3)

where a ¼ ½a1; . . . ;ag�0 is a g� 1 non-negative weight vector
that assigns different weights to different layers in the sys-
tem, which is a pre-defined parameter depending on the
application task.

It is worth to mention that motifs (defined in [10]) are sub-
networks as well. By setting function f as non-negative con-
stants, many prevalent network connectivity measures can
be reduced to SUBLINE connectivity measures; and we give
three prominent examples below, including (1) the path
capacity; (2) the loop capacity; and (3) the triangle capacity.

3.2 Example #1: Path Capacity
A natural way to measure network connectivity is through
path capacity, which measures the total (weighted) number
of paths in the network. In this case, the corresponding
function fðÞ can be defined as follows:

fðpÞ ¼ blenðpÞ if p is a valid path of length lenðpÞ
0 otherwise.

(
(4)

TABLE 1
Main Symbols

Symbol Definition and Description

A;B the adjacency matrices (bold upper case)
a;b column vectors (bold lower case)
A;B sets (calligraphic)
Aði; jÞ the element at ith row jth column in matrix A
Aði; :Þ the ith row of matrix A
Að:; jÞ the jth column of matrix A
A0 transpose of matrix A

G the layer-layer dependency matrix
A networks at each layer of MULAN

A ¼ fA1; . . . ;Agg
D cross-layer node-node dependency matrices
u, ’ one to one mapping functions
G multi-layered network MULAN

G ¼< G;A;D; u;’ >
Si; T i node sets in layer Ai

Si!j nodes in Aj that depend on nodes S in Ai

NðSiÞ nodes and cross-layer links that depend on Si
mi; ni number of edges and nodes in layer Ai

�<A;j> ;u<A;j> jth largest eigenvalue (in module) and its
corresponding eigenvector of network A

�A;uA first eigenvalue and eigenvector of network A

CðAÞ connectivity function of network A
IAðSiÞ impact of node set Si on network A
IðSiÞ overall impact of node set Si on MULAN

Fig. 2. An illustrative example of MULAN model.
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where b is a damping factor between ð0; 1=�AÞ to penalize
longer paths. With such a fðÞ function , the connectivity
function CðAÞ defined in Eq. (1) can be written as

CðAÞ ¼ 10
X1
t¼1

btAt

 !
1 ¼ 10ðI� bAÞ�11: (5)

Remarks. We can also define the path capacity with respect

to a given path length t as CðAÞ ¼ 10At1. When t ¼ 1,

CðAÞ is reduce to the edge capacity (density) of the graph,

which is an important metric for network analysis. On the

other hand, the ‘average’ path capacity ð10At1Þ1=t of a net-

work converges to the leading eigenvalue of its adjacency

matrix, i.e., ð10At1Þ1=t t!1����! �A, which is an important
network vulnerability measure in relation to the so-called
epidemic threshold [8]. In this case, the impact function
of node set S in network A can be written as
IðSÞ ¼ �A � �AnS , which can be further approximated by
the so-called ‘Shield-value’ score in [8] as follows:

IAðSÞ � SvðSÞ ¼
X
i2S

2�AuAðiÞ2 �
X
i;j2S

Aði; jÞuAðiÞuAðjÞ: (6)

Thus, the overall impact of set Si on MULAN can be esti-
mated as

IðSiÞ ¼
Xg
j¼1

ajSvðSi!jÞ (7)

3.3 Example #2: Loop Capacity
Another important way to measure network connectivity is
through the loop capacity, which measures the total
(weighted) number of loops in the network. In this case, the
corresponding function fðÞ can be defined as follows:

fðpÞ ¼
1=lenðpÞ! if p is a valid loop of length lenðpÞ
0 otherwise.

�
(8)

Then, the connectivity function CðAÞ can be written as

CðAÞ ¼
X1
t¼1

1

t!
traceðAtÞ ¼

Xn
i¼1

e�<A;i > : (9)

Accordingly, the impact function of a set of nodes S on net-
work A is

IAðSÞ ¼
Xn
i¼1

e�<A;i > �
Xn
i¼1

e�<AnS;i > ; (10)

and the overall impact of set Si on MULAN can be calculated
as

IðSÞ ¼
Xg
j¼1

aj

Xnj
i¼1

e
�<Aj;i > �

Xnj
i¼1

e
�<AjnSi!j;i >

 !
: (11)

Remarks. The spectrum of a real network is often skewed.
Thus, instead of using all the eigenvalues of A, a compu-
tationally much more efficient way is to compute the
‘truncated’ loop capacity by only keeping the top-r largest
eigenvalues in the above equation, i.e., CðAÞ ¼Pr

i¼1 e
�<A;i > . Moreover, some recent work has suggested

to adopt the logarithm of the truncated loop capacity as
an alternative way to measure network robustness, with
several distinctive advantages over the existing network
robustness measures [7].

3.4 Example #3: Triangle Capacity
A localized network connectivity measure is through
triangle capacity, i.e., the total number of triangles in the
given network. In this case, the function fðÞ can be defined as

fðpÞ ¼
1 if p is a triangle

0 otherwise.

�
(12)

It has been shown in [11] that the number of triangles in a
network is proportional to the sum of cubic of its eigenval-
ues. Thus, our corresponding connectivity function can be
expressed as

CðAÞ ¼
Xn
i¼1

�3
<A;i > : (13)

Then, the impact of node set S on the triangle capacity can
be written as

IAðSÞ ¼
Xn
i¼1

�3
<A;i > �

Xn
i¼1

�3
<AnS;i > ; (14)

and the overall impact of set Si on MULAN is

IðSÞ ¼
Xg
j¼1

aj

Xnj
i¼1

�3
<Aj;i >

�
Xnj
i¼1

�3
<AjnSi!j;i >

 !
: (15)

Remarks. Similar to the loop capacity, we can use the trun-
cated triangle capacity by only keeping the top-r eigen-
values to estimate the number of triangles.

4 CONNECTIVITY OPTIMIZATION

In this section, we first define the connectivity optimization
problem (OPERA) on multi-layered network model (MULAN);
then unveil its major theoretic properties; and last propose a
generic algorithmic framework to solve it.

4.1 OPERA: Problem Statement
We formally define the connectivity optimization problem
(OPERA) on the proposed MULAN model for multi-layered
networks as follows.

Problem 1 (OPERAonMULAN). Given: (1) a multi-layered
network G ¼<G;A;D; u;’> ; (2) a control layer Al; (3) an
impact function Ið:Þ; and (4) an integer k as operation budget;
Output: a set of k nodes Sl from the control layer (Al) such
that IðSlÞ (the overall impact of Sl) is maximized.

In the above definition, the control layer Al indicates the
sources of the ‘attack’; and the g� 1 vector a indicates the
target layer(s) as well as their relative weights. For instance,
in Fig. 2a, we can choose layer-1 as the control layer (indi-
cated by the strike sign); and set a ¼ ½0 1 0 1 �0, which means
that both layer-2 and layer-4 are the target layers (indicated
by the star signs) with equal weights between them. In this
example, once a subset of nodes S in layer-1 are attacked/
deleted (e.g., shaded circle nodes), all the nodes from layer-
2 and layer-3 that are dependent on S (e.g., shaded parallel-
ogram and triangle nodes) will be disabled/deleted, which
will in turn cause the disfunction of the nodes in layer-4
(e.g., shaded diamond nodes) that depend on the affected
nodes in layer-2 or layer-3. Our goal is to choose k nodes
from layer-1 that have the maximal impact on both layer-2
and layer-4, i.e., to simultaneously decrease the connectivity
CðA2Þ and CðA4Þ as much as possible.
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4.2 OPERA: Theory
In this section, we present the major theoretical results of
the connectivity optimization problem (OPERA) on multi-lay-
ered networks defined in Problem 1. It says that for any con-
nectivity function CðAÞ in the SUBLINE family (Eq. (1)), for
any multi-layered network in the MULAN family (Definition
1), the connectivity optimization problem (OPERA, Problem
1) bears diminishing returns property.

Let us start with the base case, where there is only one
single input network. In this case, G ¼<G;A;D; u;’> in
Problem 1 degenerates to a single-layered network A, which
is both the control layer as well as the sole control target
(i.e., a ¼ 1, and l ¼ 1). With such a setting, Lemma 1 says
that OPERA enjoys the diminishing returns property, that is,
the overall impact function IðS1Þ (which in this case degen-
erates to IðSÞ, i.e., the impact of the node set S on network
A itself) is (a) monotonically non-decreasing; (b) sub-mod-
ular; and (c) normalized.

Lemma 1 (Diminishing Returns Property of a Single-
layered Network). Given a simple undirected, un-
weighted network A, for any connectivity function CðAÞ in
the SUBLINE family, the impact function IðSÞ is (a) mono-
tonically non-decreasing; (b) sub-modular; and (c) normal-
ized, where S � A.

Proof. By the definition of the connectivity function CðAÞ
(Eq. (1)), we have

IðSÞ ¼
X
p�A

fðpÞ �
X

p�AnS
fðpÞ ¼

X
p�A;p\S6¼F

fðpÞ;

where F is the empty set. Apparently, we have IðFÞ ¼ 0
since fðFÞ ¼ 0. In other words, the impact function IðSÞ
is normalized.

Let I ;J ;K be three sets and I � J . We further define
three sets as follows: S ¼ I [ K; T ¼ J [ K;R ¼ J n I .

We have

IðJ Þ � IðIÞ ¼
X

p�A;p\J 6¼F
fðpÞ �

X
p�A;p\I 6¼F

fðpÞ

¼
X

p�A;p\ðJ nIÞ6¼F
fðpÞ ¼

X
p�A;p\R6¼F

fðpÞ

� 0;

which proves the monotonicity of the impact function
IðSÞ.

Let us define another set P ¼ T n S. We have that
P ¼ ðJ [ KÞ n ðI [ KÞ ¼ R n ðR \ KÞ � R ¼ J n I . Then,
we have

IðT Þ � IðSÞ ¼
X

p�A;p\P6¼F
fðpÞ 	 IðJ Þ � IðIÞ;

which completes the proof of the sub-modularity of the
impact function IðSÞ. tu
In order to generalize Lemma 1 to an arbitrary, generic

member in the MULAN family, we first need the following
lemma, which says that the set-ordering relationship in a
supporting layer is preserved through dependency links in
all dependent layers of MULAN.

Lemma 2 (Set-ordering Preservation Lemma on DAG).
Given a multi-layered network G ¼<G;A;D; u;’> with the

within-layer adjacency matrices A ¼ fA1; . . . ;Agg, and the
dependency network G is a directed acyclic graph (DAG). For
two node sets I l;J l in Al such that I l � J l, we have that in
any layer Ai in the system, I l!i � J l!i holds, where I l!i and
J l!i are the node sets in layer Ai that depend on I l and J l in
layer Al respectively.

Proof. If l ¼ i, we have J l!i ¼ J � I l!i ¼ I and Lemma 2
holds.

Second, if layer-i does not depend on layer-l either
directly or indirectly, we have J l!i ¼ I l!i ¼ F, where F
is an empty set. Lemma 2 also holds.

If layer-i does depend on layer-l through the layer-
layer dependency networkG, we will prove Lemma 2 by
induction. Let lenðl ˆ iÞ be the maximum length of the
path from node l to node i on the layer-layer dependency
network G. SinceG is a DAG, we have that lenðl ˆ iÞ is a
finite number.

Base Case. Suppose lenðl ˆ iÞ ¼ 1, we have that layer-i
directly depends on layer-l. LetRl ¼ J l n I l. We have that

J l!i ¼ I l!i [Rl!i 
 I l!i; (16)

which complete the proof for the base case where
lenðl ˆ iÞ ¼ 1.

Induction Step. Suppose Lemma 2 holds for len
ðl ˆ iÞ 	 q, where q is a positive integer. We will prove
that Lemma 2 also holds for lenðl ˆ iÞ ¼ q þ 1.

Suppose layer-i directly depends on layer-
ix ðx ¼ 1; . . . ; dðiÞ, where dðiÞ is the in-degree of node i on
GÞ. Since G is a DAG, we have that lenðl ˆ ixÞ 	 q. By
the induction hypothesis, given I l � J l, we have that
I l!ix � J l!ix .

We further have I l!i ¼ [x¼1;...;dðiÞ ðI l!ixÞix!i.
LetRl!ix ¼ J l!ix n I l!ix for x ¼ 1; . . . ; dðiÞ. We have that

J l!i ¼ ½[x¼1;...;dðiÞ ðI l!ixÞix!i�
[ ½[x¼1;...;dðiÞ ðRl!ixÞix!i�
¼ I l!i [Rl!i 
 I l!i;

(17)

which completes the proof of the induction step.
Putting everything together, we have completed the

proof for Lemma 2. tu
Notice that in the proof of Lemma 2, it requires the layer-

layer dependency network G to be a DAG so that the lon-
gest path from the control layer Al to any target layer At is
of finite length. To further generalize it to arbitrary depen-
dency structures, we need the following lemma, which says
that the dependent paths from control layer to target layer
in any arbitrarily structured dependency network can be
reduced to a DAG.

Lemma 3 (DAG Dependency Reduction Lemma). Given
a multi-layered network G ¼<G;A;D; u;’> with arbitrarily
structured layer-layer dependency network G, a control layer
Al, and a target layer At, the dependent paths constructed by
Algorithm 1 can be reduced to a DAG.

Proof. In Algorithm 1, Tarjan Algorithm is first used to find
out all strongly connected components V ¼ fSC1;SC2; . . . ;
SCfg in layer-layer dependency network G. The cross-
component dependency edges are denoted as E ¼
fEi;jgi;j¼1;...;f;i6¼j where <u; v>2 Ei;j iff Gðu; vÞ ¼ 1 and

Au 2 SCi, Av 2 SCj. Based on the node set V and the edge
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set E, a directed meta graph G can be constructed where
Gðu; vÞ ¼ 1 iff Ei;j 6¼ f. The meta graph G is acyclic. Other-

wise, the cycle in G would be merged into a large strongly

connected components by Tarjan Algorithm at the first

place. Suppose the control layer Al and the target layer At

are located in strongly connected component SCi and SCj
respectively, then a set of acyclic paths P from SCi and SCj
can be extracted from G. To show that the dependent paths

from Al to At is DAG, we only need to show that each
meta path P 2 P can be unfolded into a DAG.

Herewe proceed to show how ameta path P can be rep-
resented with a DAG. As the nodes in P are strongly con-
nected components that contain cycles, and the edges in P
contain corresponding cross-component edges that would
not introduce any cycles, representing P with a DAG can
be converted to a problem of unfolding the cyclic depen-
dent paths in a strongly connected component into a DAG.
As described in Algorithm 4, a strongly connected compo-
nent Q can be partitioned into two parts: (1) a DAG that
contains all acyclic links (denoted as GQ;0) and (2) links
that enclose cycles inQ (denoted as EQ;0). Therefore, given
a strongly connected componentQ and a set of dependent
nodes fT vgAv2Q inQ, the dependent cycle can be replaced
by a chain ofGQ;0’s replicas, where the two adjacent repli-
cas are linked by EQ;0 until the number of the dependent
nodes in the connected component converges (step 5 to 23
in Algorithm 3). As the number of dependent nodes keeps
increasing in each iteration and is upper bounded by
the total number of nodes inQ, the repetition is guaranteed
to stop at a stable state within finite iterations. Since
GQ;0 is a DAG, the links (EQ;0) between each replicas
fGQ;1; . . . ;GQ;Lgwould not introduce any cycle, the result-
ing graph GQ is also a DAG. Therefore, the dependent
paths constructed by Algorithm 1 from Al and At can be
represented as a DAG. tu
A complete DAG reduction algorithm is summarized

from Algorithms 1, 2, 3, and 4.

Algorithm 1. DAG Reduction Algorithm

Input: (1) A multi-layered network G, (2) a control layer Al, (3)
a set of node Sl in layer Al and (4) a target layer At

Output: (1) a DAG GD that contains all the dependent paths
from Sl in layer Al to At and (2) Sl!t.

1: find out all strongly connected components inG as
V  fSC1;SC2; . . . ;SCfgwith Tarjan Algorithm2

2: set E  fEi;jgi;j¼1;...;f , where <u; v>2 Ei;j iff Gðu; vÞ ¼ 1
and Au 2 SCi, Av 2 SCj

3: construct meta graph G from V s.t. Gði; jÞ ¼ 1 iff Ei;j 6¼ f

4: SCi  connected component that contains Al

5: SCj  connected component that contains At

6: find out all paths P from SCi to SCj in G
7: initializeGD  f, Sl!t ¼ f

8: for each path P in P do

9: ½GP
D;SPl!t�  unfoldPathðP;G;Sl;G;V; EÞ

10: GD  GD [GP
D, Sl!t  Sl!t [ SPl!t

11: end for
12: return [GD, Sl!t]

Algorithm 2. UnfoldPath: Construct DAG fromMeta Path

Input: (1) A meta path P ¼ SCi ! � � � ! SCj, (2) a meta graph G,
(3) a set of nodes Sl in Al 2 SCi, (4) a multi-layered network
G, (5) all strongly connected components V and (6) all cross-
component edges E

Output: (1) a DAGGP
D and (2) SPl!t.

1: append f to the end of meta path P
2: setQ ¼ SCi
3: iq  index of connected component Q in meta graph G
4: i00q  �1
5: for each layer Av in Q do
6: initialize T v  f

7: end for
8: T l  T l [ Sl
9: set root R Al

10: while true do
11: ½GP

Q; fSPl!vgAv2Q�  unfoldSCðQ; fT vgAv2Q;RÞ
12: if i00q ¼ �1 then
13: GP

D  GP
Q

14: else
15: for each < u; v >2 Ei00q ;iq do

16: link layer A
Li00q
u 2 GP

D to layers fAx
vgx¼1;...;Liq

2 GP
Q

17: end for
18: end if
19: Q0  Q:successorðÞ
20: ifQ0 ¼ f then
21: break
22: else
23: i0q  index ofQ0 in meta graph G
24: for each layer Av in Q0 do
25: initialize T v  f

26: end for
27: for each edge < u; v >2 Eiq;i

0
q
do

28: T v  T v [ ðSPl!uÞu!v

29: end for
30: R Ar, where Ar is a randomly picked layer from Q0

with T r 6¼ f

31: Q  Q0
32: i00q  iq
33: iq  i0q
34: end if
35: end while
36: returnGP

D, SPl!t

In Algorithm 1, step 1 runs Tarjan Algorithm [12] to find
out all the strongly connected components in layer-layer
dependency network G. Step 2 collects all cross-component
edges into set E. In the following step, a meta graph G is con-
structed based on V and E. In step 4 and 5, the connected
components that contain control layer and target layer are
located (SCi and SCj). Step 6 finds out all meta paths from
SCi to SCj. In step 7, the final DAG GD and dependent node
set Sl!t are initialized as empty sets. From step 8 to step 11,
the DAG GP

D and dependent node set SPl!t for each path P
in P are calculated by function unfoldPath, and are used to
updateGD and Sl!t in step 10.

To illustrate how Algorithm 1 works, we present a simple
example in Fig. 3. In the example, the dependency network
G contains three layers, whereA1 is the control layer andA3

is the target layer. Specifically,A2 is a dependent layer ofA1;
while A2 and A3 are inter-dependent to each other. The toy

2. A widely used strongly connect component detection algorithm
in [12].
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example has two strongly connected components fSC1;SC2g
and one cross-component edge set E1;2 ¼ f<1; 2>g. The
meta graph G is a link graphwith just two nodes.

In Algorithm 2, the first connected component Q is ini-
tialized as the connected component that contains control
layer Al in step 2, the dependent nodes are initialized as Sl
from step 5 to 8 and the root layer R is initialized as the con-
trol layer Al. From step 10 to 36, the DAG GP

Q and the final
dependent nodes in Q are calculated by function unfoldSC
in line 11; GP

Q is then added to the final DAG GP
D via cross-

component links Ei00q ;iq from step 15 to 17. The initial depen-
dent nodes for the next connected component SCi0q are com-
puted through cross-component links Eiq;i

0
q
from step 27 to

29. Step 30 is used to pick a root layer with non-empty
dependent node set for SCi0q .

Algorithm 3. UnfoldSC: Construct DAG from Strongly
Connected Component

Input: (1) A strongly connected component Q, (2) a set of initial
nodes for each layer fT vgAv2Q, (3) a root layer R

Output: (1) a DAGGQ (2) fSl!vgAv2Q.

1: extract DAG and cycle edges ½GQ;0; EQ;0�  extractDAG
ðQ;RÞ

2: setGQ;1  GQ;0, denote the layers inGQ;1 as fA1
vg

3: set c 1
4: initializeGQ  GQ;1
5: while true do
6: fT c

vgAv2Q  dependents of fT vgAv2Q inGQ;c

7: update fT vgAv2Q  fT v [ T c
vgAv2Q

8: setGQ;cþ1  GQ;0, layers inGQ;cþ1 are denoted as fAcþ1
v g

9: extendGQ  GQ [GQ;cþ1
10: for each edge < u; v >2 EQ;0 do
11: T u!v  all dependents of T u in layer Av

12: if T u!v~T v then
13: add edge < Ac

u;A
cþ1
u > toGQ

14: update T v  T v [ T u!v

15: end if
16: end for
17: if no edge added betweenGQ;c andGQ;cþ1 then
18: removeGQ;cþ1 fromGQ
19: break
20: else
21: c cþ 1
22: end if
23: end while
24: return [GQ, fT vgAv2Q]

Algorithm 3 is used to unfold a strongly connected com-
ponent into a DAG. In step 1, the input connected compo-
nent Q is partitioned into a DAG GQ;0 and a set of cycle

links EQ;0. In step 2, the DAG GQ is initialized by GQ;1,
which is a replica of GQ;0. From step 5 to 23, the algorithm
keeps appending replicas ofGQ;0 (GQ;cþ1) ontoGQ (step 8 to
16) until no new nodes are added to the dependent node set
fT vgAv2Q (step 17-19).

Algorithm 4. ExtractDAG: Extract DAG from Strongly
Connected Component

Input: (1) A strongly connected component Q and (2) a root
layer R in the connected component

Output: (1) a DAG GQ;0 (2) edge set EQ;0 that contains all cycle
edges.

1: initializeGQ;0  Q
2: initialize EQ;0  f

3: for each layer Av 2 Q do
4: initialize its ancestor list Lv  f

5: end for
6: initialize a queue T  f

7: T :enqueueðRÞ
8: while T 6¼ f do
9: Au  T :dequeueðÞ
10: for each dependent layer Av of Au do
11: if Av 2 Lu then
12: remove edge < Au;Av > fromGQ;0
13: EQ;0  EQ;0[ < Au;Av >
14: else
15: T :enqueueðAvÞ
16: Lv  Lv [ Lu [ fAug
17: end if
18: end for
19: end while
20: return [GQ;0, EQ;0]

For the example in Fig. 3, SC1 is unfolded as G1 with one
nodeA1

1 in Fig. 4. The initial dependent node set T 2 for layer
A2 can be calculated through E1;2 as T 1!2. For SC2, it is first
partitioned into a DAG G2;0 and a cycle edge set
E2;0 ¼ f<A3;A2>g as shown in Fig. 3. Suppose that the
dependent node set in SC2 converges in L2 iterations, then
the DAG for SC2 can be presented with L2 replicas of G2;0

linked by edges f<Ac
3;A

cþ1
2 >g c¼1;...;L2�1 as shown in Fig. 4.

Putting all together, the final DAG GD can be constructed
by linking A1

1 inG1 with fAx
2gx¼1;...;L2

inG2.
Algorithm 4 is used to partition a strongly connected

component Q into a DAG GQ and an edge set EQ;0 that con-
tains all cycle edges. The basic idea is to use Breadth-First-
Search algorithm to traverse all the edges in the graph. In
step 1 and 2,GQ;0 and EQ;0 are initialized asQ and f respec-
tively. For each edge <Au;Av> in Q, if Av appears in Au’s

Fig. 3. A cyclic dependency multi-layered network.
Fig. 4. Constructed DAG for Fig. 3.
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ancestor list Lu, then <Au;Av> would be removed from
GQ;0 and added to EQ;0 (step11 to 13).

The algorithms used in Lemma 3 together with Lemma 2
guarantee that set-ordering preservation property also
holds in multi-layered networks with arbitrarily structured
dependency graphG.

Now, we are ready to present our main theorem as
follows.

Theorem 1 (Diminishing Returns Property of MULAN).
For any connectivity function CðAÞ in the SUBLINE family
(Eq. (1)) and any multi-layered network in the MULAN family
(Definition 1); the overall impact of node set Sl in the control
layer l, IðSlÞ ¼

Pg
i¼1 aiIðSl!iÞ, is (a) monotonically non-

decreasing; (b) sub-modular; and (c) normalized.

Proof. We first prove the sub-modularity of function IðSlÞ.
Let I l;J l;Kl be three node sets in layer Al and I l � J l.
Define the following two sets as: Sl ¼ I l [ Kl and
T l ¼ J l [ Kl. We have that

IðSlÞ � IðI lÞ ¼
Xg
i¼1

aiIðSl!iÞ �
Xg
i¼1

aiIðI l!iÞ

¼
Xg
i¼1

aiðIðSl!iÞ � IðI l!iÞÞ
(18)

IðT lÞ � IðJ lÞ ¼
Xg
i¼1

aiIðT l!iÞ �
Xg
i¼1

aiIðJ l!iÞ

¼
Xg
i¼1

aiðIðT l!iÞ � IðJ l!iÞÞ;
(19)

8i ¼ 1; . . . ; g, it is obvious that Sl!i ¼ I l!i [ Kl!i,
T l!i ¼ J l!i [ Kl!i. By Lemma 2, we have I l!i � J l!i.
Furthermore, by the sub-modularity of IðSiÞ on Ai

(Lemma 1), we have that

IðSl!iÞ � IðI l!iÞ � IðT l!iÞ � IðJ l!iÞ:

Since for 8i, we have ai � 0. Therefore

Xg
i¼1

aiðIðSl!iÞ � IðI l!iÞÞ �
Xg
i¼1

aiðIðT l!iÞ � IðJ l!iÞÞ: (20)

Putting Eqs. (18), (19), and (20) together, we have that

IðSlÞ � IðI lÞ � IðT lÞ � IðJ lÞ;

which completes the proof that IðSlÞ is sub-modular.
Notice that the connectivity function CðAÞ in the SUB-

LINE family is monotonically non-decreasing. By Eq. (18),
we have that

IðSlÞ � IðI lÞ ¼
Xg
i¼1

aiðCðAi n I lÞ � CðAi n SlÞÞ � 0;

which completes the proof that IðSlÞ is monotonically
non-decreasing.

Finally, notice that for each dependent layer, the
impact function IðSiÞ is normalized (Lemma 1); and for
i ¼ 1; . . . ; g, Fl!i ¼ F (an empty set). Therefore we have
that IðFÞ ¼ 0. In other words, IðSlÞ is also normalized. tu

4.3 OPERA: Algorithms and Analysis
In this section, we introduce our algorithm to solve OPERA

(Problem 1), followed by some analysis in terms of the opti-
mization quality as well as the complexity.

A Generic Solution Framework. Finding out the global
optimal solution for Problem 1 by a brute-force method
would be computationally intractable, due to the
exponential enumeration. Nonetheless, the diminishing
returns property of the impact function Ið:Þ (Theorem 1)
immediately lends itself to a greedy algorithm for solving
OPERA with any connectivity function in the SUBLINE fam-
ily and arbitrary member in the MULAN family, as sum-
marized in Algorithm 5.

In Algorithm 5, step 2-4 calculate the impact score
Iðv0Þ ðv0 ¼ 1; 2; . . .Þ for each node in the control layer Al.
Step 5 selects the node with the maximum impact score. In
each iteration in step 7-19, we select one of the remaining
ðk� 1Þ nodes, which would make the maximum marginal
increase in terms of the current impact score (step 12,
marginðv0Þ ¼ IðS [ fv0gÞ � IðSÞ). In order to further speed-
up the computation, the algorithm admits an optional lazy
evaluation strategy (adopted from [13]) by activating an
optional ‘if’ condition in Step 11.

Note that it is easy to extend Algorithm 5 to the sce-
nario where we have multiple control layers. Suppose
Al ¼ fAl1 ;Al2 ; . . . ;Alxg is a set of control layers, to select
best k nodes from Al, we only need to scan over all the
nodes in Al in step 2 and step 9 respectively, and pick
the highest impact node from the entire candidate set in
step 5 and 18. Consequently, the resulting set S returned
from the algorithm would contain the k highest impact
nodes over Al.

Algorithm 5. OPERA: A Generic Solution Framework

Input: (1) A multi-layered network G, (2) a control layer Al, (3)
an overall impact function IðSlÞ and (4) an integer k

Output: a set of k nodes S from the control layer Al.
1: initialize S to be empty
2: for each node v0 in layer Al do
3: calculate marginðv0Þ  Iðv0Þ
4: end for
5: find v ¼ argmaxv0marginðv0Þ and add v to S
6: setmarginðvÞ  �1
7: for i ¼ 2 to k do
8: setmaxMargin �1
9: for each node v0 in layer Al do
10: /*an optional ‘if’ for lazy eval.*/

11: ifmarginðv0Þ > maxMargin then
12: calculate marginðv0Þ  IðS [ fv0gÞ � IðSÞ
13: ifmarginðv0Þ > maxMargin then
14: setmaxMargin marginðv0Þ and v v0
15: end if
16: end if
17: end for
18: add v to S and setmarginðvÞ  �1
19: end for
20: return S

Algorithm Analysis. Here, we analyze the optimality as
well as the complexity of Algorithm 5, which are summa-
rized in Lemmas 4, 5, and 6. According to these lemmas,
our proposed Algorithm 1 leads to a near-optimal solution
with a linear complexity.
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Lemma 4 (Near-optimality). Let Sl and ~Sl be the sets selected
by Algorithm 5 and the brute-force algorithm, respectively. Let
IðSlÞ and Ið ~SlÞ be the overall impact of Sl and ~Sl. Then
IðSlÞ � ð1� 1=eÞIð ~SlÞ.

Proof. As proved in Theorem 1, the overall impact function
IðSÞ (S � Al) is monotonic, sub-modular and normalized.
Using the property of such functions in [14], we have

IðSlÞ � ð1� 1=eÞIð ~SlÞ. tu

Lemma 5 (Time complexity). Let hðni;mi; jSl!ijÞ be the time
to compute the impact of node set Sl on layer i. The time com-
plexity for selecting S of size k from the control layer Al is
upper bounded by OðkðjN ðAlÞj þ nl

Pg
i¼1 hðni;mi; jSl!ijÞÞÞ

where NðAlÞ denotes the nodes and cross-layer links in G that
depends on Al.

Proof. The greedy algorithm with lazy evaluation strategy
needs to iterate over all the nodes in layer Al for k time. At
each time, the worst case is that we need to evaluate the
marginal increase for all unselected nodes inAl. The overall
complexity of finding dependents of every nodes in Al is
equal to the size of the sub-system that rooted onAl, which
is jN ðAlÞj. And for each unselected node, finding out its
current impact to the system as shown in step 3 and step 12
can be upper bounded by the complexity of

Pg
i¼1 h

ðni;mi; jSl!ijÞ because there are at most g non-zero
weighted layers that depends on Al. Taking these all
together, the complexity of selecting set S from Al with
Algorithm 5 is Oðk½jN ðAlÞj þ nl

Pg
i¼1 hðni;mi; jSl!ijÞ�Þ,

where jN ðAlÞj is upper bounded by N þ L, which is the
sum of total number of nodes and total number of depen-
dency links in G. If given that function h is linear to ni;mi

and jSl!ij, as jSl!ij is upper bounded by ni, and nl can be
viewed as a constant compared toN;M and L, it is easy to
see that the complexity of the algorithm is linear to N , M
andL. tu

Remarks. Lemma 5 implies a linear time complexity of the
proposed OPERA algorithm wrt the size of the entire multi-
layered network ðN þM þ LÞ, where N;M;L are the total
number of nodes, the total number of within-layer links
and the total number of cross-layer links inG under the con-
dition that the function h is linear wrt ni;mi and jSl!ij. This
condition holds for most of the network connectivity meas-
ures in the SUBLINE family, e.g., the path capacity, the trun-
cated loop capacity and the triangle capacity. To see this, let
us take the most computationally expensive truncated loop
capacity as an example. The time complexity for calculating
truncated loop capacity in a single network isOðmrþ nr2Þ,
where r is the number of eigenvalues used in the calculation
and it is often orders of magnitude smaller compared with
m and n. On the other hand, we have jN ðAlÞj 	 N þ L.
Therefore, the overall time complexity for selecting set S of
size k from control layer Al is upper bounded by
OðkðN þ Lþ nl

Pg
i¼1ðmirþ nir

2ÞÞÞ ¼ OðkðN þ Lþ nlðrM þ
r2NÞÞÞ.

Lemma 6 (Space complexity). Let wðni;mi; jSl!ijÞ be a
function of ni,mi and jSl!ij that denotes the space cost to com-
pute IðSl!iÞ. The space complexity of Algorithm 5 is
OðN þM þ LÞ under the condition that the function w is lin-
ear wrt ni,mi and jSl!ij.

Proof. As defined in Lemma 5, N;M;L are the total number
of nodes, total number of within-layer links and total

number of cross-layer links in G. Then storing multi-
layered network G would take a space of OðN þM þ LÞ.
In Algorithm 5, it takesOðnlÞ to save the marginal increase
vector (margin) andOðkÞ to save result S. As space for com-
puting IðSl!iÞ can be reused for each layer i, then comput-
ing IðSl!iÞ is bounded by argmaxiwðni;mi; jSl!ijÞ. If
function w is linear wrt ni, mi and jSl!ij, then the space
complexity of Algorithm 5 is of OðN þM þ Lþ kþ nlÞþ
OðargmaxiðniÞÞ þOðargmaxiðmiÞÞ ¼OðN þM þ LÞ. tu

Remarks. The condition that the function w is linear wrt ni,
mi and jSl!ij holds for most of the network connectivity
measures in the SUBLINE family, which in turn implies a
linear space complexity for the proposed OPERA algo-
rithm. Again, let us take the truncated loop capacity con-
nectivity as an example. Storing the input MULAN (G)
takes OðN þM þ LÞ in space. The space cost to calculate
the truncated loop capacity in a single-layered network is
Oðmþ nrÞ, where r is the number of eigenvalues used for
the computation. Again, r is usually a much smaller num-
ber compared with m and n, and thus is considered as a
constant. Therefore, the overall space complexity for
OPERA with the truncated loop capacity is OðN þM þ LÞ.

5 EXPERIMENTAL RESULTS

In this section, we empirically evaluate the proposed OPERA

algorithms. All experiments are designed to answer the
following two questions:

� Effectiveness: how effective are the proposed OPERA

algorithms at optimizing the connectivity measures
(defined in the proposed SUBLINE family) of a multi-
layered network (from the proposed MULAN
family)?

� Efficiency: how fast and scalable are our algorithms?

5.1 Experimental Setup
Data Sets Summary. We perform the evaluations on four
application domains, including (D1) a multi-layered Inter-
net topology at the autonomous system level (MULTIAS);
(D2) critical infrastructure networks (INFRANET); (D3) a
social-information collaboration network (SOCINNET); and
(D4) a biological CTD (Comparative Toxicogenomics Data-
base) network [15] (BIO). For the first two domains, we use
real networks to construct the within-layer networks (i.e., A
in the MULAN model) and construct one or more cross-layer
dependency structures based on real application scenarios
(i.e., G and D in the MULAN model). For the data sets in
SOCINNET and BIO domains, both the within-layer networks
and cross-layer dependency networks are based on real con-
nections. A summary of these data sets is shown in Table 2.
We will present the detailed description of each application
domains in Section 5.2.

TABLE 2
Data Sets Summary

Data Sets Application
Domains

# of
Layers

# of
Nodes

# of
Links

D1 MULTIAS 2 � 4 5,929 � 24,539 11,183� 50,778
D2 INFRANET 3 19,235 46,926
D3 SOCINNET 2 63,501 � 124,445 13,097� 211,776
D4 BIO 3 35,631 253,827
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Baseline Methods. To our best knowledge, there is no exist-
ing method which can be directly applied to the connectiv-
ity optimization problem (Problem 1) of the MULAN model.
We generate the baseline methods using two complemen-
tary strategies, including forward propagation (‘FP’ for short)
and backward propagation (‘BP’ for short). The key idea
behind the forward propagation strategy is that an important
node in control layer might have more impact on its depen-
dent networks as well. On the other hand, for the backward
propagation strategy, we first identify important nodes in the
target layer(s), and then trace back to its supporting layer(s)
through the cross-layer dependency links (i.e., D). For both
strategies, we need a node importance measure. In our eval-
uations, we compare three different measures, including (1)
node degree; (2) pagerank measure [16]; and (3) Netshield
values [8]. In addition, for comparison purpose, we also ran-
domly select nodes either from the control layer (for the for-
ward propagation strategy) or from the target layer(s) (for
the backward propagation strategy). Altogether, we have
eight baseline methods (four for each strategy, respectively),
including (1) ‘Degree-FP’, (2) ‘PageRank-FP’, (3) ‘Netshield-
FP’, (4) ‘Rand-FP’, (5) ‘Degree-BP’, (6) ‘PageRank-BP’, (7)
‘Netshield-BP’, (8) ‘Rand-BP’.

OPERA Algorithms and Variants. We evaluate three preva-
lent network connectivity measures, including (1) the lead-
ing eigenvalue of the (within-layer) adjacency matrix,
which relates to the epidemic threshold of a variety of cas-
cading models; (2) the loop capacity (LC), which relates to
the robustness of the network; and (3) the triangle capacity
(TC), which relates to the local connectivity of the network.
As mentioned in Section 3, both the loop capacity and the
triangle capacity are members of the SUBLINE family. Strictly
speaking, the leading eigenvalue does not belong to the SUB-

LINE family. Instead, it approximates the path capacity (PC),
and the latter (PC) is a member of the SUBLINE family. Corre-
spondingly, we have three instances of the proposed OPERA

algorithm (each corresponding to one specific connectivity
measures) including ‘OPERA-PC’, ‘OPERA-LC’, and ‘OPERA-
TC’. Recall that there is an optional lazy evaluation step
(step 11) in the proposed OPERA algorithm, thanks to the
diminishing returns property of the SUBLINE connectivity
measures. When the leading eigenvalue is chosen as the
connectivity function, such diminishing returns property
does not hold any more. To address this issue, we introduce
a variant of OPERA-PC as follows. At each iteration, after the
algorithm chooses a new node v (step 18, Algorithm 1), we
(1) update the network by removing all the nodes that
depend on node v, and (2) update the corresponding lead-
ing eigenvalues and eigenvectors. We refer to this variant as

‘OPERA-PC-Up’. For each of the three connectivity measures,
we run all four OPERA algorithms.

Machines and Repeatability. All the experiments are per-
formed on a machine with 2 processors Intel Xeon 3.5 GHz
with 256 GB of RAM. The algorithms are programmed with
MATLAB using single thread. All the data sets used in this
paper are publicly available. We will open source all the
codes after the paper is accepted.

5.2 Effectiveness Results
D1 - MULTIAS. This data set contains the Internet topology at
the autonomous system level. The data set is available
at http://snap.stanford.edu/data/. It has nine different net-
work snapshots, with 633 � 13;947 nodes and 1;086 � 30;584
edges. In our evaluations, we treat these snapshots as the
within-layer adjacency matrices A. For a given supporting
layer, we generate the cross-layer node-node dependency
matricesD by randomly choosing 3 nodes from its dependent
layer as the direct dependents for each supporting node. For
this application domain,we have experimentedwith different
layer-layer dependency structures (G), including a three-lay-
ered line-structured network, a three-layered tree-structured
network, a four-layered diamond shaped network and a
three-layered cyclic network. As the experimental results in
the first three networks follows similar pattern, we only pres-
ent the results on diamond shaped network and cyclic net-
work in Figs. 5 and 6 due to page limits. Overall, the four
instances of the proposed OPERA algorithm perform better
than the baseline methods. Among the baseline methods, the
backward propagation methods are better than the forward
propagation methods under acyclic dependency networks
(5). This is because the length of the back tracking path on the
dependency network G (from the target layer to the control
layer) is short. Therefore, comparedwith other baseline meth-
ods, the node set returned from the BP strategy is able to affect
more important nodes in the target layer. While for the cyclic
dependency network in Fig. 6, the back tracking path is elon-
gated by the cycle. Then the nodes selected by BP strategy are
not guaranteed to affect more important nodes in the target
layer than FP strategy.

D2 - INFRANET. This data set contains three types of criti-
cal infrastructure networks, including (1) the power grid,
(2) the communication network; and (3) the airport net-
works. The power grid is an undirected, un-weighted net-
work representing the topology of the Western States
Power Grid of the United State [17]. It has 4,941 nodes and
6,594 edges. We use one snapshot from the MULTIAS data
set as the communication network with 11,461 nodes and
32,730 edges. The airport network represents the internal

Fig. 5. Evaluations on the MULTIAS data set, with a four-layered diamond-shaped dependency network. The connectivity change versus budget.
Larger is better. All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.
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US air traffic lines between 2,649 airports and has 13,106
links (available at http://www.levmuchnik.net/Content/
Networks/NetworkData.html). We construct a triangle-
shaped layer-layer dependency network G (see the icon of
Fig. 7) based on the following observation. The operation of
an airport depends on both the electricity provided by the
power grid and the Internet support provided by the com-
munication network. In the meanwhile, the full-functioning
of the communication network depends on the support of
power grid. We use similar strategy as in MULTIAS to gener-
ate the cross-layer node-node dependency matrices D. The
results are summarized in Fig. 7. Again, the proposed OPERA

algorithms outperform all the baseline methods. Similar to
the MULTIAS network, the back tracking path from the air-
port layer to the power grid layer is also very short. There-
fore, the backward propagation strategies perform relatively
better than other baseline methods. In addition, we change
the density of the cross-layer node-node dependency matri-
ces and evaluate its impact on the optimization results in
Fig. 8. We found that (1) across different dependency densi-
ties, the proposed OPERA algorithms still outperform the

baseline methods; and (2) when the dependency density
increases, the algorithms lead to a larger decrease of the cor-
responding connectivitymeasures with the same budget.

D3 - SOCINNET. This data set contains three types of social-
information networks [18], including (1) a co-authorship net-
work; (2) a paper-paper citation network; and (3) a venue-
venue citation network. Different from the previous two data
sets, two types of cross-layer node-node dependency links
naturally exist in this data set, including who-writes-which
paper, and which venue-publishes-which paper. In our experi-
ment, we use the papers published between year 1990 to 1992.
In total, there are 62,602 papers, 61,843 authors, 899 venues,
10,739 citation links, 201,037 collaboration links, 2,358 venue
citation links, 126,242 author-paper cross-layer links, and
62,602 venue-paper cross-layer links.

We evaluate the proposed algorithms in two scenarios
with this data set, including (1) an author-paper two-layered
network; and (2) a venue-paper two-layered network. For
both scenarios, we choose the paper-paper citation network
as the target layer. Fig. 9 presents the results on the author-
paper two-layered network. We can see that three out of four

Fig. 7. Evaluations on the INFRANET data set, with a three-layered triangle-shaped dependency network. The connectivity change versus budget.
Larger is better. All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

Fig. 6. Evaluations on the MULTIAS data set, with a three-layered cyclic dependency network. The connectivity change versus budget. Larger is bet-
ter. Three out of four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

Fig. 8. D� wrtK. Change the average number of dependents between Power Grid and AS from 5, 10 to 15 (left to right).
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OPERA algorithms outperform all the baseline methods in all
the three cases. OPERA-PC does not perform as well as the
remaining three OPERA instances due to the gap between the
leading eigenvalue and the actual path capacity. However,
the issue can be partially addressed with OPERA-PC-Up by
introducing an update step. Among the baseline methods, the
backward propagation strategy is better since the target layer is
directly dependent on the control layer, whichmakes it possi-
ble to trace back the high-impact authors given the set of high-
impact papers. The poor performance of the forward propaga-
tionmethods implies that a socially active author does not nec-
essarily have high-impact papers. The results on the venue-
paper network is similar as shown in Fig. 10. Different from
the author-paper network, the backward propagation strate-
gies perform worse than the forward propagation strategies.
This is probably due to the fact that not all the important
(high-impact) papers appear in the important (high-impact)
venues.

D4 - BIO. This data set contains three types of biological
networks [15] including (1) a chemical similarity network
with 6,026 chemicals, 69,109 links; (2) a gene similarity net-
work with 25,394 genes, 154,167 links; and (3) a disease
similarity network with 4,256 diseases, 30,551 links. The
dependencies between those layers depict which chemical-
affects-which gene, which chemical-treats-which disease, and
which gene-associates-which disease relations, each of which
contains 53,735, 19,771 and 1,950 dependency links respec-
tively. The evaluation results are as shown in Fig. 11.
Despite the fact that the proposed OPERA algorithms out-
perform all other baseline methods, there are two interest-
ing observations that worth to be mentioned. First is that
the impact of chemical nodes on disease networks become
saturated at a small budge value for all connectivity meas-
ures, which implies that only a few chemicals are effective
in treating most of the diseases in the given data set.

Second, the ineffectiveness of forward propagation methods
indicates that chemicals with various compounds (high
within-layer centrality nodes) may have little effects in dis-
ease treatment.

5.3 Efficiency Results
Fig. 12 presents the scalability of the proposed OPERA algo-
rithms. We can see that all four instances of OPERA scale line-
arly with respect to the size of the input multi-layered
network (i.e.,N þM þ L), which is consistent with the com-
plexity analysis in Section 4.3. The wall-clock time for
OPERA-PC-Up is the longest compared with the remaining
three instances, due to the additional update step.

6 RELATED WORK

In this section, we review the related work, which can be
categorized into two groups: (a) network connectivity opti-
mization, and (b) multi-layered network analysis.

Network Connectivity Optimization. Connectivity is a fun-
damental property of networks, and has been a core
research theme in graph theory and mining for decades.
Depending on the specific applications, many network con-
nectivity measures have been proposed in the past. Exam-
ples include the size of giant connected component (GCC),
graph diameter, the mixing time [19], the vulnerability mea-
sure [20], the epidemic thresholds [21], the natural connec-
tivity [22] and the number of triangles in the network, each
of which often has its own, different mathematical defini-
tions. In [10], Milo et al. showed that network motifs are the
simple building blocks of complex networks; and network
motifs are essentially different patterns of subgraph struc-
tures. Partially inspired by this discovery, we find that
many network connectivity measures can be expressed as
the aggregation of the connectivity of its subgraph

Fig. 9. Evaluations on the SOCINNET data set, with a two-layered author-paper dependency network. The connectivity change versus budget. Larger
is better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.

Fig. 10. Evaluations on the SOCINNET data set, with a two-layered venue-paper dependency network. The connectivity change versus budget. Larger
is better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.
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structures, which leads to a unified viewpoint of some prev-
alent network connectivity measures (Section 3).

From algorithm’s perspective, network connectivity opti-
mization aims to maximize or minimize the corresponding
connectivity measures by manipulating the underlying
topology (e.g., add/remove nodes/links). Earlier work,
either explicitly or implicitly, assumes that nodes/links with
higher centrality scores would have a greater impact on net-
work connectivity. This assumption has led tomany research
efforts on finding good node/link centrality measures (or
node/link importance measure in general) . Some widely
used centralitymeasures include shortest path based central-
ity [23], PageRank [16], HITS [24], coreness score [25], local
Fiedler vector centrality [26] and random walks based cen-
trality [27]. Different from those node centrality oriented
methods, some recent work aims to take one step further by
collectively finding a subset of nodes/links with the highest
impact on the network connectivity measure. For example,
Tong et al. [8], [28], [29], [30] proposed both node-level and
edge-level manipulation strategies to optimize the leading
eigenvalue of the network, which is the key network connec-
tivity measure behind a variety of cascading models. In [7],
Chan et al. further generalized these strategies to manipulate
the network robustness measure through the truncated loop
capacity [22]. Another important aspect of network connec-
tivity optimization problem lies in the network dynamics.
Chen et al. proposed an efficient online algorithm to track
some important network connectivity measures (e.g., the
leading eigenvalue, the robustness measure) on a temporal
dynamic network in [31], [32].

Multi-Layered Network Analysis. Multi-layered networks
have been attracting a lot of research attention in recent
years. Different models have been proposed to formulate
the multi-layered network data structure. In [33], multi-lay-
ered networks are represented as a high-order tensor, which

is coupled by a second-order within-layer networks tensor
and a second-order cross-layer dependency tensor. While
in [34], the corresponding data structure is represented as a
quadruplet M ¼ fVM;EM; V;Lg, in which each distinct
nodes in V can appear in multiple elementary layers in
L ¼ fL1; . . . ; Ldg. Then, VM � V � L1 � � � � � Ld represents
the nodes in each layer, and EM ¼ VM � VM represents both
within-layer and cross-layer links in the entire system.
In [9], the model is simplified into a pair M ¼ ðG; CÞ, where
G gives all the within-layer networks and C provides all the
cross-layer dependencies. Different from the above models,
the formulation used in our paper gives more emphasis on
the abstracted dependency network structure G, which
makes it easier to unravel the impact path for a set of nodes
from a given layer. In [35], Kivela et al. presented a compre-
hensive survey on different types of multi-layered net-
works, which include multi-modal networks [36], multi-
dimensional networks [37], multiplex networks [38] and
interdependent networks [1]. The problem addressed in
this paper is most related to the interdependent networks.
In [3] and [39], the authors presented an in-depth introduc-
tion on the fundamental concepts of interdependent, multi-
layered networks as well as the key research challenges. In
a multi-layered network, the failure of a small number of
the nodes might lead to catastrophic damages on the entire
system as shown in [1] and [40]. In [1], [5], [6], [4], [2], differ-
ent types of two-layered interdependent networks were thor-
oughly analyzed. In [39], Gao et al. analyzed the robustness
of multi-layered networks with star- and loop-shaped
dependency structures. Similar to the robustness measures
in [41], most of the current works use the size of giant con-
nected component (GCC) in the network as the evaluation
standard [42], [43], [44]. Nonetheless, the fine-granulated
connectivity details might not be captured by the GCC mea-
sure. To address the above issues, Chen et al. generalized a

Fig. 11. Evaluations on the BIO data set, with a three-layered triangle-shaped dependency network. The connectivity change versus budget. Larger
is better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.

Fig. 12. Wall-clock time versus the size of input networks. The proposed OPERA algorithms scale linearly wrt ðN þM þ LÞ.
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set of classic network connectivity measures into a unified
framework and proposed an efficient algorithm to optimize
the connectivity in more general structured multi-layered
networks [45]. In [46], De Domenico et al. proposed a
method to identify versatile nodes in multi-layered net-
works by evaluating their eigenvector centrality and
pagerank centrality. The selected versatile nodes are funda-
mentally different from our high impact nodes in three
aspects. First is that their centrality measures can not cap-
ture the collective impact of a node set on the network. Sec-
ond is that our proposed network connectivity is directly
related to only within-layer links, while cross-layer depen-
dency is the trigger for connectivity changes. The two types
of links should be treated differently rather than mixed up
for a unified centrality calculation. Last, the globally crucial
nodes in the entire system may not be able to provide an
optimal solution to minimized the connectivity in specific
target layer(s). On the other hand, existing works assume
that the observed cross-layer dependencies in multi-layered
networks are complete, which is not the case in real-world
applications due to noise, limited accessibility, etc. In [47], a
collaborative filtering based method is proposed to infer the
missing cross-layer dependencies in multi-layered network.
Other remotely related studies include cross-network rank-
ing [48] and clustering [49], [50] in multi-layered networks,
and multi-view data analysis [51], [52], [53].

7 CONCLUSION

In this paper, we study the connectivity optimization problem
on multi-layered networks (OPERA). Our main contributions
are as follows. First, we unify a family of prevalent network
connectivity measures (SUBLINE). Second, we prove that for
any network connectivity measures in the SUBLINE family, the
connectivity optimization problem with the MULAN model
enjoys the diminishing returns property, which naturally
lends itself to a family of provable near-optimal algorithms
with linear complexity. Finally, we conduct extensive empiri-
cal evaluations on real network data, which validate the effec-
tiveness and efficiency of the proposed algorithms.
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