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ABSTRACT
Networks are ubiquitous in many high impact domains. Among

the various aspects of network studies, connectivity is the one that

plays important role in many applications (e.g., information dis-

semination, robustness analysis, community detection, etc.). The

diversified applications have spurred numerous connectivity mea-

sures. Accordingly, ad-hoc connectivity optimization methods are

designed for each measure, making it hard to model and control

the connectivity of the network in a uniformed framework. On the

other hand, it is often impossible to maintain an accurate structure

of the network due to network dynamics and noise in real applica-

tions, which would affect the accuracy of connectivity measures

and the effectiveness of corresponding connectivity optimization

methods.

In this work, we aim to address the challenges on network con-

nectivity by (1) unifying a wide range of classic network connec-

tivity measures into one uniform model; (2) proposing effective

approaches to infer connectivity measures and network structures

from dynamic and incomplete input data, and (3) providing a gen-

eral framework to optimize the connectivity measures in the net-

work.
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1 INTRODUCTION
Networks are prevalent in many high-impact domains, including

information dissemination, social collaboration, infrastructure con-

structions, and many more. The most well-studied type of networks

is single-layered networks, where the nodes are collected from the

same domain and the links are used to represent the same type

of connections. However, as the world is becoming highly con-

nected, cross-domain interactions are more frequently observed in
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numerous applications, catalyzing the emergence of a new network

model–multi-layered networks [1, 8, 15, 16]. One typical example

of such type of network is critical infrastructure network as illus-

trated in Figure 1. In an infrastructure network system, the full

functioning of the autonomous system network (AS network) and

the transportation network is dependent on the power supply from

the power grid. While for the gas-fired and coal-fired generators in

the power grid, their functioning is fully dependent on the gas and

coal supply from the transportation network. Moreover, to keep the

whole complex systemworking in order, extensive communications

are needed between the nodes in the networks, which are supported

by the AS network. Multi-layered networks also appear in many

other application domains, such as organization-level collaboration

platform [3] and cross-platform e-commerce [7, 12, 13, 18].

(a) Infrastructure Network (b) Dependency Relations

Figure 1: An illustrative example of multi-layered networks.
In Figure 1(b), each ellipse corresponds to a critical infras-
tructure network in Figure 1(a). The arrows between two
ellipses indicate cross-layer dependency relationships be-
tween the corresponding two networks.

Among the various network properties studied in the literature,

network connectivity is the one that plays a crucial role in applica-

tions like disease control, network robustness analysis, community

detection, etc. Correspondingly, different connectivity measures

are designed for each of the applications. Example include epidemic

threshold [2] for disease dissemination analysis, natural connectiv-

ity [11] for robustness measurement and triangle capacity for social

network mining. Empirical analysis has demonstrated the effective-

ness of those connectivity measures in their own tasks, but none of

them can be used as a common measure across different domains.

Furthermore, most, if not all, of the existing connectivity measures

are defined on single-layered networks, leaving the problem of mea-

suring multi-layered network connectivity unexplored. To address

those problems, we propose two unified frameworks to evaluate the

connectivity in complex network. In the first framework, we define
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the connectivity of the network as a function of its eigen-pairs [5].

Several examples of eigen-function based connectivity measures

include epidemic threshold [9], eigenvector centrality [14], triangle

capacity [17], natural connectivity [11], eigen-gap [10], etc. The sec-

ond connectivity model we propose is called subline connectivity

family [3]. The key idea of subline is to view the connectivity of

the entire network as an aggregation over the connectivity scores of

its sub-networks (e.g., subgraphs). An interesting finding about sub-

line connectivity is that it can be used to approximate a wide-range

of eigen-function based connectivity measures such as epidemic

threshold, triangle capacity and natural connectivity.

Existing network connectivity research predominantly assumes

that the input network is static and accurate, which does not fit into

the noisy and dynamic real-world settings. Real-world networks are

evolving over time. In some cases, subtle changes in the network

structure may lead to huge differences on some of the connectivity

measures. To keep track of the connectivity measures in dynamic

networks, we propose an efficient connectivity tracking framework

based on matrix perturbation theory which can accurately approxi-

mate the changing connectivity measures for a fairly long period of

time [5]. On the other hand, in multi-layered networks, it remains

a daunting task to know the exact cross-layer dependency struc-

ture due to noise, incomplete data sources and limited accessibility.

To effectively infer the cross-layer dependencies in multi-layered

network, we draw an analogy from collective collaborative filtering

problems and model it with an optimization problem [6].

The crucial task for network connectivity studies is to optimize

(minimize/maximize) the connectivity score by adjusting the un-

derlying network structure. Previous literature has proved that

the optimization problem on epidemic threshold and triangle ca-

pacity in single-layered networks is NP-hard. However, for some

complex connectivity measures (e.g. natural connectivity), the hard-

ness of the corresponding optimization problems still remains un-

known. Most importantly, existing connectivity optimization meth-

ods are mainly based on single-layered networks. Compared to

single-layered networks, multi-layered networks are more sensitive

to disturbance since its effect may be amplified through cross-layer

dependencies in all the dependent networks, leading to a cascade

failure of the entire system. To tackle the connectivity optimization

problem in multi-layered networks, great efforts have been made

from different research area for manipulating two-layered interde-
pendent network systems [1, 8, 15, 16]. Although much progress

has been made, challenges are still largely open. First, as the con-

nectivity measures are highly diversified, the ad-hoc optimization

algorithms that are effective for specific measures may not work

well on other measures. Thus, the problem of how to design a

generic optimization strategy that can be applied to a wide-range

of network connectivity measures is in need of being investigated.

Second, existing optimization strategies tailored for two-layered

networks might be sub-optimal, or even misleading to arbitrar-

ily structured multi-layered networks. Alternatively, an effective

optimization algorithm should be able to unravel the nested depen-

dency structure in the network in the first place. Thus, we propose

Opera, a generalized connectivity optimization framework that

can deal with any connectivity measures that fall in the SubLine

family with arbitrary dependency structures in [4].

To summarize, the main problems studied in our work are fo-

cused on measures, inference, and optimization of network con-

nectivity in complex networks. The relationship between those

problems are shown in Figure 2. Generally speaking, a well de-

fined connectivity measure serves as the objective to inference and

optimization tasks; The inference results in turn provide a good ap-

proximation on the connectivity measure and improve the accuracy

of the input network for optimization tasks; Last, the optimization

methods are used to find optimal strategies to manipulate the net-

work structure, which can effectively change the connectivity of

the network and influence the inference results from task 2.

Figure 2: Problem overview.
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