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ABSTRACT
One fundamental problem in causal inference is to learn the in-

dividual treatment effects (ITE) – assessing the causal effects of

a certain treatment (e.g., prescription of medicine) on an impor-

tant outcome (e.g., cure of a disease) for each data instance, but

the effectiveness of most existing methods is often limited due to

the existence of hidden confounders. Recent studies have shown

that the auxiliary relational information among data can be uti-

lized to mitigate the confounding bias. However, these works as-

sume that the observational data and the relations among them

are static, while in reality, both of them will continuously evolve

over time and we refer such data as time-evolving networked ob-

servational data. In this paper, we make an initial investigation of

ITE estimation on such data. The problem remains difficult due

to the following challenges: (1) modeling the evolution patterns

of time-evolving networked observational data; (2) controlling the

hidden confounders with current data and historical information;

(3) alleviating the discrepancy between the control group and the

treated group. To tackle these challenges, we propose a novel ITE

estimation framework Dynamic Networked Observational Data De-
confounder (DNDC) which aims to learn representations of hidden

confounders over time by leveraging both current networked ob-

servational data and historical information. Additionally, a novel

adversarial learning based representation balancing method is in-

corporated toward unbiased ITE estimation. Extensive experiments

validate the superiority of our framework when measured against

state-of-the-art baselines. The implementation can be accessed in

https://github.com/jma712/DNDC.
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1 INTRODUCTION
The increasing prevalence of observational data provides a rich

source for estimating individual treatment effect (ITE) – assessing

the causal effects of a certain treatment on an outcome for each

data instance. ITE estimation has significant implications in many

high-impact domains such as health care [1], education [11], and

targeted advertising [32]. For example, to provide personalized rec-

ommendations for users, service providers need to decide whether

the recommendation of a product (treatment assignment) will mo-

tivate a user to make a purchase (outcome) based on her profile.

Most of existing works on ITE estimation [7, 13, 31, 36] ignore the

influence of hidden confounders – the unobserved variables that

causally affect both the treatment assignment and the outcome. For

example, a user’s purchasing preferences can be regarded as hidden

confounders that causally impact the items recommended to her

and her purchasing patterns [3, 30]. In other words, most existing

works heavily rely on the strong ignorability assumption [27] that

there does not exist any hidden confounders. However, without

controlling the influence of hidden confounders, these methods

may result in biased estimation of ITE [19].

To mitigate the bias induced by hidden confounders, recent stud-

ies [8–10] leverage auxiliary relational information (e.g., social

connections, patient similarity) beyond the traditional i.i.d observa-

tional data for more accurate ITE estimation. Despite their empirical

success, these works overwhelmingly assume that the observational

data and the relations among them are static. In fact, both of them

are naturally dynamic in many real-world scenarios [18]. For exam-

ple, the purchasing preferences of users and their social connections

are both evolving over time. We refer such data as time-evolving
networked observational data. The prevalence of such data in a wide

spectrum of domains brings about new opportunities to unravel the

patterns of hidden confounders towards unbiased ITE estimation.

In this paper, we investigate a novel research problem of decon-
founding with networked observational data in a dynamic environ-
ment. The causal graph of the problem setting is illustrated in Fig. 1,

where the hidden confounders at a particular time stamp not only

have causal relations to the observed variables at the same time

stamp but also be causally affected by both the hidden confounders

and the treatment assignment from previous time stamps [2], e.g.,

user purchasing preferences change over time, and are deeply influ-

enced by their previous preferences and previously recommended

https://github.com/jma712/DNDC
https://doi.org/10.1145/3437963.3441818
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Figure 1: Causal graph for the studied problem. At time 𝑡 , we
use 𝑿𝑡 , 𝑨𝑡 , 𝒁𝑡 , 𝑪𝑡 , 𝒀 𝑡 to denote the features of observational
data, relations among observational data, representations of
hidden confounders, treatment assignment, and outcomes,
respectively. The hidden confounders 𝒁𝑡+1 at 𝑡 + 1 causally
affect the treatment assignment 𝑪𝑡+1 and the outcome 𝒀 𝑡+1

at that time. To infer 𝒁𝑡+1, we can leverage the networked
observational data 𝑿𝑡+1 and 𝑨𝑡+1 at 𝑡 + 1, previous hidden
counfounders 𝒁𝑡 , and treatment assignment 𝑪𝑡 . The black
lines indicate the causal relations.

products to them, and the current user purchasing preferences

would also influence the current profiles and social connections.

In this work, we do not assume that the previous outcomes can

causally affect the variables in the current time stamp, because in

real world, it is a more common setting that the previous outcomes

do not have causal relationship on the variables in the current time

stamp, even if they might be correlated.

However, the problem remains difficult because of the following

multifaceted challenges: (1) Most of the existing causal inference

frameworks focus on static observational data. In dynamic environ-

ment, both modalities of networked observational data are evolving,

how to systematically model the evolution patterns of different data

modalities for unbiased ITE estimation requires deep investigation.

(2) Previous studies have shown that hidden confounders can be

approximated by the representations learnt from networked obser-

vational data [8, 9]. Since the hidden confounders at the current

time stamp can be controlled by two sources of information – (i)

the current networked observational data; and (ii) previous hidden

confounders and treatment assignments, it is of vital importance

to jointly model these two different sources. (3) Representation

balancing has been widely adopted to control confounding bias for

unbiased causal effect estimation [9, 14, 31], where confounding bias
exists when the correlation between the treatment and the outcome

is distorted by the existence of confounders. This problem becomes

more important in our setting as uncontrolled confounding bias

can accumulate over time, and degrade the precision of estimated

causal effects in later time stamps. Thus, a more principled balanc-

ing method is often desired in dynamic environment.

To address the aforementioned challenges, we propose a novel

causal inference frameworkDynamic Networked Observational Data
Deconfounder (DNDC), which learns dynamic representations of hid-

den confounders over time by mapping the current observational

data and historical information into the same representation space.

Additionally, we propose a novel method based on adversarial learn-

ing to balance the representations of hidden confounders from the

treated group and the control group. The main contributions of this

work can be summarized as: 1) Problem Formulation:We formu-

late a new task of ITE estimation with networked observational data

Table 1: Notations.

Notation Definition

( ·)𝑡 variables at time stamp 𝑡 *

( ·)<𝑡 , ( ·)≤𝑡 historical variables before time stamp 𝑡

(not including/ including 𝑡 )

𝑿𝑡 , 𝒙𝑡
𝑖

features of all instances/the 𝑖-th instance

𝑪𝑡 , ˆ𝑪𝑡
true/predicted treatment assignment

𝑐𝑡
𝑖

treatment assignment for the 𝑖-th instance

𝒀 𝑡
observed outcome

𝒀 𝑡
1
, ˆ𝒀 𝑡

1
true/predicted potential outcome when get treated

𝑦𝑡
1,𝑖
, �̂�𝑡

1,𝑖
true/predicted potential outcome for the 𝑖-th instance

when 𝑐𝑡
𝑖
= 1

𝒀 𝑡
0
, ˆ𝒀 𝑡

0
true/predicted potential outcome when not get treated

(controlled)

𝑦𝑡
0,𝑖
, �̂�𝑡

0,𝑖
true/predicted potential outcome for the 𝑖-th instance

when 𝑐𝑡
𝑖
= 0

𝝉𝑡 ,𝝉𝑡 true/predicted ITE

𝜏𝑡
𝑖
, 𝜏𝑡

𝑖
true/predicted ITE of the 𝑖-th instance

𝑨𝑡
network structure among data

𝒁𝑡
hidden confounders

𝒛𝑡
𝑖

hidden confounders of the 𝑖-th instance

H𝑡
historical data {𝑿<𝑡 ,𝑨<𝑡 ,𝑪<𝑡 } before time stamp 𝑡

˜𝑯 𝑡
representation of historical information

𝑯 𝑡
hidden state of GRU

𝑦𝑡
𝐹 ,𝑖

, 𝑦𝑡
𝐶𝐹,𝑖

factual(observed)/counterfactual outcome for 𝑖-th instance

�̂�𝑡
𝐹 ,𝑖

, �̂�𝑡
𝐶𝐹,𝑖

predicted factual/counterfactual outcome

𝑑ℎ, 𝑑𝑧 dimension of the representation of historical

information and hidden confounders

𝑇 # of time stamps

𝑛𝑡 # of instances at time stamp 𝑡

in dynamic environment and analyze its fundamental importance

and challenges. 2) Algorithm Design: We propose a novel causal

inference framework DNDC to tackle the challenges of the studied

problem. DNDC leverages the evolving data of both observational

variables and network structure, and learns dynamic representa-

tions of hidden confounders. A novel adversarial learning based

representation balancing method is also incorporated toward unbi-

ased ITE estimation. 3) Experimental Evaluation: Experimental

results on real-world time-evolving networked observational data

show that DNDC outperforms state-of-the-art methods.

2 PROBLEM DEFINITION
The time-evolving networked observational data is denoted as

{𝑿𝑡 ,𝑨𝑡 , 𝑪𝑡 , 𝒀 𝑡 }𝑇
𝑡=1

across 𝑇 different time stamps. Let 𝑿𝑡
be the

attributes (features) of observational data at time stamp 𝑡 , such

that 𝑿𝑡 = {𝒙𝑡
1
, ..., 𝒙𝑡

𝑛𝑡
}, where 𝒙𝑡

𝑖
represents the 𝑖-th instance (e.g.,

profile of each user), 𝑛𝑡 denotes the number of instances, and

𝑨𝑡
represents the adjacency matrix of the auxiliary network in-

formation among different data instances (e.g., user social con-

nections). For simplicity, we assume the network is undirected

and unweighted, but it can be naturally extended to directed and

weighted networks. At time stamp 𝑡 , the treatment assignment

for these 𝑛𝑡 instances is denoted by 𝑪𝑡 = {𝑐𝑡
1
, ..., 𝑐𝑡

𝑛𝑡
}, where 𝑐𝑡

𝑖

is either 0 or 1 (e.g., if a user receives the recommendation of a

specific item or not). The observed outcome of all instances at

time stamp 𝑡 is denoted by 𝒀 𝑡 = {𝑦𝑡
1
, ..., 𝑦𝑡

𝑛𝑡
} (e.g., if user buys



the item or not). 𝒁𝑡 = {𝒛𝑡
1
, ..., 𝒛𝑡

𝑛𝑡
} stands for the hidden con-

founders (e.g., users’ purchasing preferences). We use the super-

script "< 𝑡" to denote the historical data before time stamp 𝑡 ,

e.g., the instance features before time stamp 𝑡 is referred to as

𝑿<𝑡 = {𝑿1,𝑿2, ...,𝑿𝑡−1}, and 𝑪<𝑡 ,𝑨<𝑡
are defined similarly. Ad-

ditionally, we useH𝑡 = {𝑿<𝑡 ,𝑨<𝑡 , 𝑪<𝑡 } to denote all the historical
data before time 𝑡 . A detailed description of notations can be re-

ferred to Table 1. In this paper, we build our framework upon the

well-adopted potential outcome framework [22, 28]. The potential
outcome of the 𝑖-th instance under treatment 𝑐 at time stamp 𝑡 is

denoted by 𝑦𝑡
𝑐,𝑖
∈ R, which is the value of outcome that would

be realized if instance 𝑖 receives treatment 𝑐 at time 𝑡 . We rep-

resent the potential outcome of all instances at time stamp 𝑡 by

𝒀 𝑡
1
= {𝑦𝑡

1,1
, ..., 𝑦𝑡

1,𝑛𝑡
} and 𝒀 𝑡

0
= {𝑦𝑡

0,1
, ..., 𝑦𝑡

0,𝑛𝑡
}. Then we define the

individual treatment effect (ITE) on time-evolving networked obser-

vational data as: 𝜏𝑡
𝑖
= 𝜏𝑡 (𝒙𝑡

𝑖
,H𝑡 ,𝑨𝑡 ) = E[𝑦𝑡

1,𝑖
− 𝑦𝑡

0,𝑖
|𝒙𝑡
𝑖
,H𝑡 ,𝑨𝑡 ] .1

With ITE defined, the average treatment effect (ATE) is defined

as 𝜏𝑡
𝐴𝑇𝐸

= 1

𝑛𝑡
∑𝑛𝑡

𝑖=1 𝜏
𝑡
𝑖
. With the above definitions, we can formally

define the studied problem of learning individual treatment effect

with time-evolving networked observational data as follows:

Definition 1. (Learning ITE on Time-Evolving Networked Ob-
servational Data). Given the time-evolving networked observational
data {𝑿𝑡 ,𝑨𝑡 , 𝑪𝑡 , 𝒀 𝑡 }𝑇

𝑡=1
across𝑇 different time stamps, the goal is to

learn the ITE 𝜏𝑡
𝑖
for each instance 𝑖 at each time stamp 𝑡 .

It is worth noting that our work is different from the existing set-

tings of spillover effect [26] or treatment entanglement [33], where
the treatment on an instance may causally influence the outcomes

of its neighbor units. In our setting, the network structures are

exploited for controlling confounding bias. In particular, we assume

that conditioning on the latent confounders, the treatment assign-

ment and the outcome of an instance would not causally influence

the treatment assignment or the outcome of other instances.

Most existing works [13, 31, 36] rely on the strong ignorability
assumption [27], assuming that observed features are enough to

eliminate the confounding bias, i.e., no hidden confounders exist.

Definition 2. (Strong Ignorability Assumption). Given an in-
stance’s observed features, the potential outcome of this instance is
independent of its treatment assignment: 𝑦𝑡

1,𝑖
, 𝑦𝑡

0,𝑖
⊥⊥ 𝑐𝑡

𝑖
|𝒙𝑡
𝑖
.

However, this assumption is often untenable due to the existence

of hidden confounders in real-world scenarios [24]. Our method

relaxes this assumption as there exist hidden confounders 𝒁𝑡
at

each time stamp 𝑡 which causally influence the treatment 𝑪𝑡 and the
potential outcome (𝒀 𝑡

1
and 𝒀 𝑡

0
). Conditioning on 𝒁𝑡

, the treatment

assignment is randomized, i.e.,𝑦𝑡
1,𝑖
, 𝑦𝑡

0,𝑖
⊥⊥ 𝑐𝑡

𝑖
|𝒛𝑡
𝑖
. We aim to learn the

representations of hidden confounders for bias elimination based

on following assumption:

Assumption 1. (Existence of Hidden Confounders) (i) The hidden
confounders may not be accessible, but we assume that the instance
features and network structures are both correlated with the hidden
confounders, and can be considered as proxy variables. (ii) Hidden
confounders at each time stamp are also influenced by the hidden
confounders and treatment assignment from previous time stamps.

1
In this work, we follow [31] to define ITE in the form of the Conditional Average

Treatment Effect (CATE).

Based on the above assumption and some common assumptions

in causal inference described in Section 4, we now show the identifi-

cation result of our framework. For simplicity, we drop the instance

index 𝑖 for notations 𝒛𝑡 , 𝒙𝑡 , 𝑦𝑡 , 𝑐𝑡 :

Theorem 2.1. (Identification of ITE) If we recover𝑝 (𝒛𝑡 |𝒙𝑡 ,H𝑡 ,𝑨𝑡 )
and 𝑝 (𝑦𝑡 |𝒛𝑡 , 𝑐𝑡 ), then the proposed DNDC can recover the ITE under
the causal graph in Fig. 1.

3 THE PROPOSED FRAMEWORK
We propose a frameworkDNDC for ITE estimation in time-evolving

networked observational data. The overall framework, as illustrated

by Fig. 2, consists of three essential components: confounder repre-

sentation learning, potential outcome and treatment prediction, and

representation balancing. Firstly, DNDC learns representations of

hidden confounders over time by mapping the current networked

observational data and historical information into the same repre-

sentation space. Later on, the learnt representations are leveraged

for the potential outcome prediction and the treatment prediction.

Additionally, to balance the representations of hidden confounders

from the treated group and the control group, we develop a novel ad-

versarial learning based balancing method. Next, we will elaborate

on these components in the following subsections.

3.1 Confounder Representation Learning
As mentioned previously, the hidden confounders can be causally

related to the current features of data instances and the relations

among them, as well as the previous hidden confounders and treat-

ment assignment. Therefore, the proposed DNDC first aims to learn

the representations of hidden confounders by taking advantage of

the aforementioned information. As the confounders can be related

to the relations among observational data in addition to the fea-

ture information, we propose to use graph convolutional networks

(GCNs) [15] to capture the influence of these two different data

modalities in learning the representations of hidden confounders:

𝒛𝑡𝑖 = 𝑔(( [𝑿𝑡 , �̃� 𝑡−1])𝑖 ,𝑨𝑡 ) = ˆ𝑨𝑡
ReLU(( ˆ𝑨𝑡 [𝑿𝑡 , �̃� 𝑡−1])𝑖𝑼0)𝑼1, (1)

where 𝑔(·) denotes the transformation function parameterized by

GCNs. Here, we stack two GCN layers to capture the non-linear

dependency between the current hidden confounders and the input.

𝑼0, 𝑼1 denote the parameters of two GCN layers. �̃� 𝑡−1 ∈ R𝑛𝑡×𝑑ℎ
denotes the historical information before time stamp 𝑡 , which com-

presses previous hidden confounders and treatment assignment.

𝒛𝑡
𝑖
∈ R𝑑𝑧 denotes the representation of hidden confounders for

instance 𝑖 at time 𝑡 . Also, [., .] denotes the concatenation operation

and (·)𝑖 represents the 𝑖-th row of the matrix. The matrix
ˆ𝑨𝑡

is the

normalized adjacency matrix computed from 𝑨𝑡
beforehand with

the renormalization trick [15].

To characterize the evolution patterns of time-evolving net-

worked observational data, we make use of a Gated Recurrent

Unit (GRU) [5] based memory unit to catch the temporal depen-

dency between the current information and the historical infor-

mation, in both of which the hidden confounders and treatment

assignment are encoded. Specifically, in the GRU, the current in-

formation (𝒁𝑡
, 𝑿𝑡

, 𝑪𝑡 ) and previous hidden state 𝑯 𝑡−1
are first

compressed into a new hidden state 𝑯 𝑡 ∈ R𝑛𝑡×𝑑ℎ by the GRU

layer: 𝑯 𝑡 = GRU(𝑯 𝑡−1, [𝒁𝑡 ,𝑿𝑡 , 𝑪𝑡 ]). It should be noted that the
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Figure 2: An illustration of the proposed framework DNDC.

confounders’ representation 𝒁𝑡
does not take the treatment as-

signment 𝑪𝑡 at time stamp 𝑡 as its input because it stands for the

pre-treatment status of an instance. At the same time, 𝑪𝑡 is a part
of the hidden state 𝑯 𝑡

of the GRU and will contribute to learning

the historical information �̃� 𝑡
.

To weigh the importance of the historical information from dif-

ferent time stamps, attention mechanism [20, 34] is applied among

different hidden states of GRU. The attention weight 𝛼𝑡,𝑠 that mod-

els the importance of the hidden states of GRU from time stamp

𝑠 on those of time stamp 𝑡 (𝑠 < 𝑡 ) can be calculated with different

attention score functions on 𝒉𝑡 and 𝒉𝑠 , e.g., the widely used bilinear
[20] function or the scaled dot product [34] function. At each time

stamp, the attention weights are normalized by softmax function:

𝜶𝑡 = softmax( [𝛼𝑡,1, 𝛼𝑡,2, ...𝛼𝑡,𝑡−1]). With these attention weights,

we can obtain a context vector 𝒗𝑡 at each time stamp 𝑡 , which will

capture the historical dependency by a linear combination of previ-

ous hidden states of GRU: 𝒗𝑡 =
∑𝑡−1
𝑠=1 𝛼𝑡,𝑠𝒉

𝑠
. In order to incorporate

the current and historical information, we concatenate 𝒉𝑡 and 𝒗𝑡

and feed it into a MLP layer to generate the representation for

the historical information till time stamp 𝑡 as: ˜𝒉𝑡 = MLP( [𝒉𝑡 , 𝒗𝑡 ]),
where

˜𝒉𝑡 ∈ R𝑑ℎ is the compressed vector of historical information

for an instance at time stamp 𝑡 . For all instances, they form a matrix

�̃� 𝑡
. As shown in Fig. 2, at the next time stamp, we will feed �̃� 𝑡

as input to the confounding representation phase to capture the

evolution of confounders over time.

3.2 Prediction with Hidden Confounders
Potential outcome prediction. The proposed DNDC infers the

potential outcome with two functions 𝑓1, 𝑓0 : R𝑑𝑧 −→ R, corre-
sponding to the two cases when treatment is taken or not, i.e.,

𝑦𝑡
1,𝑖

= 𝑓 (𝒛𝑡
𝑖
, 𝑐𝑡
𝑖
= 1) = 𝑓1 (𝒛𝑡𝑖 ), 𝑦

𝑡
0,𝑖

= 𝑓 (𝒛𝑡
𝑖
, 𝑐𝑡
𝑖
= 0) = 𝑓0 (𝒛𝑡𝑖 ) . Here,

we use two MLPs to model 𝑓1 and 𝑓0. In this way, for each in-

stance, both of its factual outcome 𝑦𝑡
𝐹,𝑖

(observed outcome) and

counterfactual outcome 𝑦𝑡
𝐶𝐹,𝑖

(unobserved outcome with the con-

trary treatment) are estimated. The loss function of the potential

outcome inference module is defined using the mean squared error:

L𝑦 = E𝑡 ∈[𝑇 ],𝑖∈[𝑛𝑡 ] [(𝑦𝑡𝐹,𝑖 − 𝑦
𝑡
𝐹,𝑖 )

2] . (2)

Treatment prediction. The proposed DNDC also contains a treat-

ment predictor, which takes 𝒁𝑡
as the input, and the actual treat-

ment assignment 𝑪𝑡 as the target. This treatment predictor is im-

plemented by a MLP with softmax operation as the last layer. The

loss function of the treatment predictor is:

L𝑐 = −E𝑡 ∈[𝑇 ],𝑖∈[𝑛𝑡 ] [(𝑐𝑡𝑖 log(𝑠
𝑡
𝑖 ) + (1 − 𝑐

𝑡
𝑖 ) log(1 − 𝑠

𝑡
𝑖 ))], (3)

where 𝑠𝑡
𝑖
is the output of the softmax layer, which can be con-

sidered as the predicted propensity score for instance 𝑖 at time

stamp 𝑡 . Specifically, the propensity score of an instance 𝑖 refers

to its probability to be treated (in the treated group) such that

𝑃 (𝑐𝑡
𝑖
= 1|𝒙𝑡

𝑖
,𝑨𝑡 ,H𝑡 ), and in our setting we approximate it with

𝑠𝑡
𝑖
= softmax(MLP(𝒁𝑡

𝑖
)).

3.3 Representation Balancing
Recent studies [31] theoretically show that balancing the repre-

sentations of treated and control groups would help mitigate the

confounding bias and minimize the upper bound of the outcome

inference error. Motivated by this, in our work, we study the prob-

lem of learning a balanced representation for ITE estimation from

time-evolving networked observational data and develop a novel

adversarial learning based balancing method.

Adversarial Learning based Balancing. We propose to use a

gradient reversal layer [6] to solve the representation balancing

problem. Specifically, the gradient reversal layer does not change

the input during the forward-propagation phase, but when back-

propagation happens, the gradient reversal layer reverses the gra-

dient by multiplying it by a negative scalar. Intuitively, during

back-propagation, the gradient reversal layer enables us to (1) train

the treatment predictor by minimizing the treatment prediction

loss L𝑐 ; and (2) achieve representation balancing via maximizing

L𝑐 w.r.t. the model parameters of the confounder representation

learning. In particular, we add the gradient reversal layer before



the treatment predictor to ensure the confounder representation

distribution of the treated and that of the controlled are similar at

the group level. At the same time, we still utilize the observed treat-

ment assignment as a supervision signal to learn the confounder

representation of each instance. In this way, balanced representa-

tions are learned for potential outcome prediction and treatment

prediction. As the model will minimize the loss of the treatment

prediction, the adversarial learning process will benefit from both

the treatment predictor and the distribution balancing.

3.4 Loss Function for the Proposed DNDC
By putting all the aforementioned components together, we obtain

the final loss function of the proposed DNDC framework:

L {{𝒙𝑡𝑖 , 𝑦
𝑡
𝑖 , 𝑐

𝑡
𝑖 }

𝑛𝑡

1
,𝑨𝑡 }𝑇

1
=L𝑦 + 𝛽L𝑐 + 𝛾 | |𝜽 | |2, (4)

where 𝛽 , 𝛾 are the hyperparameters to control the effect of different

parts, 𝜽 is the set of parameters in this model and 𝛾 | |𝜽 | |2 is included
to prevent overfitting. To show how the proposed adversarial learn-

ing based balancing method works in the training process, we write

the gradient updates that happen while minimizing Eq. (4) as:

𝜽𝑧 ← 𝜽𝑧 − ` (
𝜕L𝑦

𝜕𝜽𝑧
− 𝜔 𝜕𝛽L𝑐

𝜕𝜽𝑧
+ 2𝛾𝜽𝑧),

𝜽𝑐 ← 𝜽𝑐 − ` (
𝜕𝛽L𝑐

𝜕𝜽𝑐
+ 2𝛾𝜽𝑐 ),

𝜽𝑦 ← 𝜽𝑦 − ` (
𝜕L𝑦

𝜕𝜽𝑦
+ 2𝛾𝜽𝑦),

(5)

where 𝜽𝑧 , 𝜽𝑐 , and 𝜽𝑦 are the model parameters of the hidden con-

founder representation learning, the treatment prediction, and the

potential outcome prediction, respectively. When updating 𝜽𝑧 , the
gradient backpropagated from the treatment predictor is reversed

by multiplying with a negative constant −𝜔 . The positive real scalar
` stands for the learning rate of the optimization process.

4 THEORY
Before the formal proof of Theorem 1, as there are some common

assumptions used in most works as well as ours for ITE estimation,

we first present them under our setting:

Assumption 2. (Consistency). If the treatment history is 𝑪≤𝑡 ,
then the observed outcome 𝒀 ≤𝑡 equals to the potential outcome under
treatment 𝑪≤𝑡 .

Assumption 3. (Positivity). If the probability 𝑝 (𝒛𝑡 ) ≠ 0, then the
probability of any treatment assignment 𝒄𝑡 at time stamp 𝑡 is in the
range of (0, 1), i.e., 0 < 𝑝 (𝒄𝑡 |𝒛𝑡 ) < 1.

Assumption 4. (SUTVA). The potential outcomes for any instance
are not influenced by the treatment assignment of other instances,
and, for each instance, there are no different forms or versions of each
treatment level, which lead to different potential outcomes.

Inmost existingworks, the identification of ITE is based on above

three assumptions, along with the strong ignorability assumption.

In this paper, we relax the strong ignorability assumption and allow

the existence of the hidden confounders which could be captured

from the time-evolving networked observational data. Based on

above premise, we study on the identification of ITE in such data:

Theorem1. (Identification of ITE) If we recover𝑝 (𝒛𝑡 |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ),
𝑝 (𝑦𝑡 |𝒛𝑡 , 𝑐𝑡 ), then the proposed DNDC can recover the ITE under

the causal graph in Fig. 1.

Table 2: Detailed statistics of the datasets.

Dataset Flickr BlogCatalog PeerRead

# of instances 7, 575 5, 196 6, 867 ∼ 7, 601

# of links 236, 582 170, 626 11, 819

∼ 240, 374 ∼ 173, 524 ∼ 13, 684

# of features 12, 047 8, 189 1, 087

# of time stamps 25 20 17

ratio (%) of treated 48.72 ± 1.42 46.52 ± 1.58 56.52 ± 3.36
Avg ATE ± STD 14.35 ± 21.10 20.45 ± 16.63 60.12 ± 83.57

Proof. Under these above assumptions, we can prove the iden-

tification of ITE:

𝜏𝑡
(𝑖)
= E𝑦 [𝑦𝑡1 − 𝑦

𝑡
0
|𝒙𝑡 ,H𝑡 ,𝑨𝑡 ] (6)

(𝑖𝑖)
= E𝑧 [E𝑦 [𝑦𝑡1 − 𝑦

𝑡
0
|𝒙𝑡 , 𝒛𝑡 ,H𝑡 ,𝑨𝑡 ] |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ] (7)

(𝑖𝑖𝑖)
= E𝑧 [E𝑦 [𝑦𝑡1 − 𝑦

𝑡
0
|𝒛𝑡 ] |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ] (8)

(𝑖𝑣)
= E𝑧 [E𝑦 [𝑦𝑡1 |𝒛

𝑡 , 𝑐𝑡 = 1] − E𝑦 [𝑦𝑡0 |𝒛
𝑡 , 𝑐𝑡 = 0] |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ] (9)

(𝑣)
= E𝑧 [E𝑦 [𝑦𝑡𝐹 |𝒛

𝑡 , 𝑐𝑡 = 1] − E𝑦 [𝑦𝑡𝐹 |𝒛
𝑡 , 𝑐𝑡 = 0] |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ], (10)

where 𝜏𝑡 = 𝜏𝑡 (𝒙𝑡 ,H𝑡 ,𝑨𝑡 ), we drop the instance index 𝑖 for sim-

plification. The equation (𝑖) is the definition of ITE in our setting,

equation (𝑖𝑖) is a straightforward expectation over 𝑝 (𝒛𝑡 |𝒙𝑡 ,H𝑡 ,𝑨𝑡 ),
equation (𝑖𝑖𝑖) can be inferred from the structure of the causal graph

shown in Fig. 1, and the SUTVA assumption is implicitly used in the

causal graph, equation (𝑖𝑣) is based on the assumption that 𝒛𝑡 con-
tains all the hidden confounders, as well as the positivity assump-

tion, and equation (𝑣) can be inferred from the consistency assump-

tion. Thus, if our framework can correctly model 𝑝 (𝒛𝑡 |𝒙𝑡 ,H𝑡 ,𝑨𝑡 )
and 𝑝 (𝑦𝑡 |𝒛𝑡 , 𝑐𝑡 ), then the ITEs can be identified under the causal

graph in Fig. 1. □

5 EVALUATION
In this section, we conduct extensive experiments to validate the

effectiveness of the proposed framework DNDC. Considering that

the counterfactual outcome and hidden confounders are often un-

available in most real-world scenarios, it is notoriously hard to

collect the ground-truth ITEs on real-world observational datasets.

Thus, we follow existing literature [8, 9] to create semi-synthetic

datasets under different settings.

5.1 Datasets and Simulation
5.1.1 Datasets. The datasets used in the experiments are based

on three real-world attributed networks, Flickr, BlogCatalog, and

PeerRead. The key statistics of these datasets are shown in Table 2,

including the number of instances, links, features, and time stamps,

as well as the ratio of the treated instances, and the average ATE

and its standard deviation over 10 experiments.

Flickr. Flickr2 is an image and video based social network, where

each node represents a user and each edge stands for the friendship

between two users. At each time stamp, we randomly inject/remove

0.1 ∼ 1.0% edges, and perturb 0.1% node features (based on the

noises sampled from 𝑁 (0, 0.012)), yielding a dynamic network

across 25 time stamps. The features are a list of tags showing users’

2
https://www.flickr.com/



interest. We train a 50-topic LDA model [25] on the features and

select the top-25 most frequent words from each topic to create

hidden confounding. We create a semi-synthetic dataset with the

following assumptions: (1) Treatment. A user has more viewers

from either mobile devices (treated) or desktops (controlled). (2)

Outcome. A user receives some reviews from the viewers of her

posts. (2) Confounders. Viewers of a user have their preferences

of devices which are influenced by the topics of the user’s posts.
These topics of users causally influence both the devices chosen by

their viewers and the reviews they get. (4) Historical influence. The
topics of a user’s posts can be influenced by her previously observed

treatment (more viewers from mobile devices or desktops) and the

social network, e.g., if a user finds more viewers of her posts are

from mobile devices, then she may consider to post more about the

topics (e.g., sports) that are preferred by users on mobile devices.

To study the ITE of peoples’ device preference on the reviews, we

simulate the confounders, treatment assignments, and outcome.

The detailed simulation process is described in Section 5.1.2.

BlogCatalog. BlogCatalog3 is a social network website where blog-
gers can share their blogs, where each node represents a blogger

and each edge stands for a social relationship between two bloggers.

The node features are the bag-of-word representations of the blog-

ger’s blogs. As this dataset is also a static data, we follow the same

process as Flickr to generate a time-evolving attributed network

across 20 different time stamps. We further simulate the treatment

assignment, confounders, and outcome in the same way as Flickr.

PeerRead. PeerRead4 is a dataset of computer scientific peer re-

views for papers, and has been used in previous research of causal

inference [35]. This dataset contains a real-world dynamic net-

work of coauthor relations over time. We select 17 time stamps

of dynamic network which contains 6867 ∼ 7601 authors. In this

dataset, each node refers to an author, and each edge represents

their co-author relationship. The features are the bag-of-word rep-

resentations of their paper titles and abstracts. The confounders are

their research areas. The treatment is whether the authors’ papers

contain buzzy words in their titles and abtracts, which are words in

a preset dictionary {"deep", "neural", "network", "model"}.
The outcome denotes the citation numbers of authors. To study the

ITE of buzzy words on the authors’ citation, we use the real-world

treatment, and simulate the confounders and potential outcomes

in the same way as Flickr.

5.1.2 Data Simulation. We incorporate the effect of historical in-

fluence (as a 𝑝-order autoregressive term [21]) and network infor-

mation to simulate the confounders 𝒛𝑡
𝑖
at time stamp 𝑡 as:

𝒛𝑡𝑖 = (
1∑

3

𝑘=1
_𝑘
) (_1𝝍𝑡

𝑖 + _2
∑

𝑢∈𝑁 (𝑖)
𝑓 (𝒙𝑡𝑢 ) + _3 𝑓 (𝒙𝑡𝑖 )) + 𝜖

𝑡 , (11)

𝜓𝑡
𝑖, 𝑗 =

1

𝑝

(
𝑝∑
𝑟=1

𝛼𝑟,𝑗𝑧
𝑡−𝑟
𝑖, 𝑗 +

𝑝∑
𝑟=1

𝛽𝑟𝑐
𝑡−𝑟
𝑖

)
, (12)

where 𝒛𝑡
𝑖
denotes the hidden confounders of instance 𝑖 at time stamp

𝑡 . 𝝍𝑡
𝑖
denotes the historical information. 𝑧𝑡

𝑖, 𝑗
and𝜓𝑡

𝑖, 𝑗
represents the

𝑗-th dimension of 𝒛𝑡
𝑖
and 𝝍𝑡

𝑖
, respectively. 𝑁 (𝑖) denotes the neigh-

boring nodes of node 𝑖 . The function 𝑓 (·) maps the bag-of-words

3
https://www.blogcatalog.com/

4
https://github.com/allenai/PeerRead

features of instances to their LDA topics [25]. Here, we train a

LDA model with 50 topics with the whole training corpus. The pa-

rameters _1, _2 and _3 control the impact of historical information,

current network structure, and current features on the confounders.

In the experiments, we set _1 = 0.3, _2 = 0.3, _3 = 0.3 by default.

𝜖𝑡 ∼ N(0, 0.0012) is the random noise, 𝛼𝑟,𝑗 ∼ N(1− (𝑟/𝑝), (1/𝑝)2)
controls the impact of historical information from the previous

𝑝 time stamps, where 𝑝 is set to 3 by default, 𝛽𝑟 ∼ N(0, 0.022)
controls the impact of previous treatment assignment.

To synthesize observed treatment assignment, we select two

points 𝒓0 and 𝒓1 in the LDA topic space as the centroids for the

treated and controlled groups. We simulate the treatment as follows:

𝑐𝑡𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝑒𝑥𝑝 (𝑝𝑡

𝑖,1
)

𝑒𝑥𝑝 (𝑝𝑡
𝑖,0
) + 𝑒𝑥𝑝 (𝑝𝑡

𝑖,1
)
), (13)

𝑝𝑡𝑖,0 = 𝒓
′
0
𝒛𝑡𝑖 , 𝑝

𝑡
𝑖,1 = 𝒓

′
1
𝒛𝑡𝑖 . (14)

Then we synthesize the potential outcomes as below by setting

𝑐 = 1 or 𝑐 = 0:

𝑦𝑡𝑐,𝑖 = 𝑆 (𝑝𝑡𝑖,0 + 𝑐 · 𝑝
𝑡
𝑖,1) + [

𝑡
(15)

where 𝑆 is a scaling factor, and is specified as 𝑆 = 20.[𝑡 ∼ N(0, 0.52)
is a random noise term.

5.2 Evaluation Metrics
We adopt two widely used evaluation metrics – Rooted Precision in

Estimation of Heterogeneous Effect (PEHE) [13] andMean Absolute

Error (ATE) [38] to measure the quality of the estimated individual

treatment effects at different time stamps:√
𝜖𝑡
𝑃𝐸𝐻𝐸

=

√√
1

𝑛𝑡

∑
𝑖∈[𝑛𝑡 ]

( ˆ𝜏𝑡
𝑖
− 𝜏𝑡

𝑖
)2 . (16)

𝜖𝑡𝐴𝑇𝐸 = | 1
𝑛𝑡

∑
𝑖∈[𝑛𝑡 ]

𝜏𝑖
𝑡 − 1

𝑛𝑡

∑
𝑖∈[𝑛𝑡 ]

𝜏𝑡𝑖 |. (17)

We take the average over all time stamps for evaluation.

5.3 Experiment Settings
Baselines. To investigate the effectiveness of our framework in

learning ITEs from time-evolving networked observational data,

we compare our framework with multiple state-of-the-art methods:

• Causal Forest (CF) [36]. Based on the strong ignorability

assumption [27], CF learns ITE as an extension of Breiman’s

random forest [4]. We set the number of trees as 100.

• BayesianAdditive Regression Trees (BART) [13]. BART
is a Bayesian regression tree based ensemble model that is

widely used in learning ITE. It is also based on the strong

ignorability assumption.

• Counterfactual Regression (CFR) [31]. CFR also learns

representation for the confounders based on the strong ignor-

ability assumption. Balancing techniques includingWasserstein-

1 distance and maximum mean discrepancy are adopted and

we refer these two variants as CFR-Wass and CFR-MMD.

• Causal Effect Variational Autoencoder (CEVAE) [19].
CEVAE is a deep latent-variable model for learning ITE,

which learns representation of confounders as Gaussian dis-

tributions through propagating information from original

features, observed treatments, and factual outcome.
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Figure 3: Performance comparison under different settings of historical information influence.
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Figure 4: Performance comparison under different settings of network structure influence.

• Network Deconfounder (NetDeconf) [9]. NetDconf re-
laxes the strong ignorability assumption by assuming that

the hidden confounders of observational data can be con-

trolled with auxiliary relational information among data.

Setup.All the aforementioned baselines are designed for static data

and thus we run these algorithms at each time stamp independently.

On the other hand, only our proposed DNDC can well capture the

temporal dependency for ITE estimation. The data instances (nodes)

are randomly split into 60-20-20% of training/validation/test data.

We evaluate the average

√
𝜖𝑃𝐸𝐻𝐸 and 𝜖𝐴𝑇𝐸 over all the time stamps,

and all the results are averaged over 10-time repeated executions.

Unless otherwise specified, we set our learning rate as 5𝑒−4,𝑑ℎ = 64,

𝑑𝑧 = 64, 𝛽 = 1.0, 𝛾 = 0.01, and we use Adam as our optimizer. For

all the baselines based on confounder representation learning such

as CEVAE and NetDeconf, we also set the dimension of the learnt

representation as 𝑑𝑧 , same as our proposed method. As described in

the Section 5.1.2, in the experiments, we use three hyperparameters

_1, _2, and _3 to control the influence of the historical information,

current network structure, and current feature information on the

current confounders, respectively.

5.4 ITE Estimation by Varying the Influence of
Historical Information

Here we investigate how DNDC performs when the level of influ-

ence from historical information (including previous hidden con-

founders and treatment assignment) varies. We fix other parameters

_2 = 0.3 and _3 = 0.3, and modify _1 in Eq. (11) (in Section 5.1.2) to

control the influence of the historical information on the hidden con-

founders at the current time stamp. We compare the performance of

ITE prediction of DNDC and other baselines. Due to the space limit,

we only show the results on Flickr and BlogCatalog in Fig. 3 as

we have similar observations on PeerRead. Generally speaking, we

observe that our proposed DNDC consistently outperforms all the

baselines with lower

√
𝜖𝑃𝐸𝐻𝐸 and 𝜖𝐴𝑇𝐸 . When _1 = 0, the historical

information will not affect the current hidden confounders. In this

case, our model and NetDeconf achieve the best performance by

utilizing the auxiliary relational information among data to approx-

imate the hidden confounders. When _1 increases, the current ITE

inference relies more on the historical information, while other

baselines are not able to catch the historical influence on ITE at

the current time stamp. Thus their performance drops dramatically,

while the performance of our proposed DNDC is stably better as it

leverages the historical information. One-tail Student’s t-tests are

also conducted to confirm that our method performs significantly

better than other baselines with a significant level of 0.05.

5.5 ITE Estimation by Varying the Influence of
Network Structure

To verify the effectiveness of the proposed DNDC in utilizing the

relational information embedded in a network, we fix other param-

eters _1 = 0.3 and _3 = 0.3, and compare DNDC with baselines by

varying the values of _2. Similarly, we only show the results on

Flickr and BlogCatalog to save space. As can be observed from the

comparison results shown in Fig. 4, when _2 = 0, the hidden con-

founders of each instance is independent of others’, thus NetDeconf

loses its superiority without using the relational information among

data. When _2 increases, its performance is much less jeopardized

compared to that of other baselines due to the increasing impact

from network structure on hidden confounders. Causal Forest also

achieves good performance because its hypothesis implicitly mod-

els the propagation mechanism on the network over time, which

to some degree leverages the neighbor features to catch the hid-

den confounders. Our DNDC achieves the best performance, we

attribute the improvement to two key factors: 1) when _2 is small,

DNDC can achieve better ITE estimation by capturing the historical

influence on the hidden confounders at the current time stamp; 2)



Table 3: Performance comparison with different representa-
tion balancing methods.

Dataset Wass MMD Gradient Reverse

Flickr

√
𝜖𝑃𝐸𝐻𝐸 9.125 ± 1.566 9.531 ± 1.573 8.131 ± 1.342

𝜖𝐴𝑇𝐸 1.839 ± 0.368 1.952 ± 0.433 1.413 ± 0.351

BlogCatalog

√
𝜖𝑃𝐸𝐻𝐸 16.115 ± 2.857 17.035 ± 4.243 15.132 ± 2.542

𝜖𝐴𝑇𝐸 4.815 ± 1.367 5.250 ± 1.345 3.414 ± 1.272

PeerRead

√
𝜖𝑃𝐸𝐻𝐸 49.062 ± 4.452 49.643 ± 4.834 47.716 ± 4.014

𝜖𝐴𝑇𝐸 5.482 ± 1.347 5.648 ± 1.617 4.451 ± 1.379
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Figure 5: Representation distributions with or without gradi-
ent reverse layer.
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Figure 6: Ablation study for different variants of DNDC.

when _2 increases, the confounder representation learning com-

ponent captures the series of information hidden in the network

structure, which leads to a more accurate and stable ITE estimation.

5.6 The Impact of Representation Balancing
To evaluate the impact of the proposed adversarial learning based

representation balancing method, we compare the performance of

our balancing method with other two commonly used represen-

tation balancing methods: Wasserstein-1 (Wass) distance [29] and

maximum mean discrepancy (MMD) [31]. Table 3 shows the results

of ITE estimation performance with these different representation

balancing techniques and our method consistently outperforms

other baselines. Fig. 5 shows a specific example of the represen-

tation distributions with/without the gradient reverse layer. We

observe that with the gradient reverse layer, the representation

distributions of treated and control group become closer.

5.7 Ablation Study
To further investigate the impact of different components of DNDC,
we conduct ablation study by comparing DNDC against the follow-

ing variants: (1) No GRU : This variant omits the GRU and attention

layers, which means that no historical information is utilized in

learning the confounders. As this variant does not benefit from the

memory of previous time stamps, we denote it by DNDC-NM. (2) No
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Figure 7:
√
𝜖𝑃𝐸𝐻𝐸 with different values of learning rate `, em-

bedding size 𝑑𝑧 , 𝛽 and 𝛾 .

GCNs: In this variant, we replace the GCN layers with a simple MLP.

We denote this variant by DNDC-NG. (3) No balancing: This variant
does not use any representation balancing techniques and is de-

noted by DNDC-NB. Fig. 6 reports the ITE estimation performance

of different variants of our proposed framework. We can see that

DNDC-NM and DNDC-NG cannot render satisfactory performance

as they cannot leverage historical information or network structure

for learning representations of hidden confounders. The perfor-

mance of DNDC-NB is degraded by the imbalance of distributions

between the treated and the control group, while DNDC performs

better with balancing method because the distribution balancing

helps mitigate the confounding bias. In short, all three components

contribute to the superior performance of DNDC.
5.8 Hyperparameter Study
To investigate how the values of model hyperparameters affect the

performance of DNDC, we assess its performance under different

settings of the learning rate ` ∈ {10−5, 10−4, 10−3, 10−2}, represen-
tation dimension 𝑑𝑧 ∈ {16, 32, 64, 128}, 𝛽 ∈ {0.5, 1.0, 1.5, 2.0} and
𝛾 ∈ {10−4, 10−3, 10−2, 10−1}. Leaving out all the similar observa-

tions, we only show the ITE estimation performance

√
𝜖𝑃𝐸𝐻𝐸 with

different values of learning rates `, embedding size 𝑑𝑧 , 𝛽 and 𝛾 on

Flickr in Fig. 7, where we observe that, the model achieves the best

performance when ` is around 10
−4
, 𝑑𝑧 ∈ [32, 64], 𝛽 = 1.0 and

𝛾 = 0.01. Similar observations can be observed on other datasets, as

well as 𝜖𝐴𝑇𝐸 . Generally speaking, our model is not very sensitive

to the model parameters in a wide range.

6 RELATEDWORK
Treatment effect learning for static i.i.d data. Most observa-

tional studies [4, 13] focus on i.i.d data in the static setting. Specif-

ically, recent years witnessed a surge of research interests in es-

timating ITEs by representation learning [39]. Among them, [31]

shows that balancing the representation distribution of the treated

and control group can help upper bound the error of counterfactual

outcome estimation. However, these methods have two limitations:

1) they rely on the strong ignorability assumption and ignore the

influence of hidden confounders; 2) they fail to utilize the evolving

process of the observed variables and the relations among indi-

viduals. [19] relaxes the strong ignorability assumption by taking

observed features as proxy variables of hidden confounders using

variational inference, but still limited for static i.i.d data.

Treatment effect learning from networked data. Instead of

making the strong ignorability assumption, [17, 23] theoretically

show that observed proxy variables can be exploited to capture the

hidden confounders and estimate the treatment effect. Recently,



[35] starts to utilize the network information as proxy variables to

mitigate the confounding bias, but this work has some limitations:

(1) it only considers network structure without leveraging features

of instances; (2) it relies on the doubly robust estimator which

can only estimate average treatment effect (ATE) over the whole

population. Recently, [8, 9] propose to unravel patterns of hidden

confounders from the network structure along with the observed

features by learning representations of hidden confounders, and use

the representation for potential outcome prediction. Nonetheless,

these works focus on a static setting and are unable to provide

accurate ITE estimation over time when the data is evolving.

7 CONCLUSION
In this paper, we study a problem of ITE estimation from networked

observational data in a dynamic environment and develop a novel

framework DNDC. We specify this framework by learning repre-

sentations of hidden confounders over time for potential outcome

prediction and treatment prediction. Additionally, we also incor-

porate a novel adversarial learning based balancing technique into

DNDC toward unbiased ITE estimation. The proposed framework

is evaluated on multiple semi-synthetic datasets extended from

real-world data of attributed networks. Extensive experimental

evaluations demonstrate the superiority of our framework over

existing ITE estimation frameworks. The future work may include

exploiting more available models [12, 16], as well as expanding the

framework to more general settings such as multiple treatments

[37] and heterogeneous data [40].
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