
Network Connectivity Optimization:
Fundamental Limits and Effective Algorithms

Chen Chen
Arizona State University
chen_chen@asu.edu

Ruiyue Peng
Translational MRI, LLC

rpeng8@asu.edu

Lei Ying
Arizona State University

lei.ying.2@asu.edu

Hanghang Tong
Arizona State University
hanghang.tong@asu.edu

ABSTRACT

Network connectivity optimization, which aims to manipulate net-

work connectivity by changing its underlying topology, is a fun-

damental task behind a wealth of high-impact data mining appli-

cations, ranging from immunization, critical infrastructure con-

struction, social collaboration mining, bioinformatics analysis, to

intelligent transportation system design. To tackle its exponential

computation complexity, greedy algorithms have been extensively

used for network connectivity optimization by exploiting its di-

minishing returns property. Despite the empirical success, two key

challenges largely remain open. First, on the theoretic side, the

hardness, as well as the approximability of the general network

connectivity optimization problem are still nascent except for a

few special instances. Second, on the algorithmic side, current algo-

rithms are often hard to balance between the optimization quality

and the computational efficiency. In this paper, we systematically

address these two challenges for the network connectivity opti-

mization problem. First, we reveal some fundamental limits by

proving that, for a wide range of network connectivity optimiza-

tion problems, (1) they are NP-hard and (2) (1 − 1/e) is the optimal

approximation ratio for any polynomial algorithms. Second, we

propose an effective, scalable and general algorithm (CONTAIN) to

carefully balance the optimization quality and the computational

efficiency.

CCS CONCEPTS

•Mathematics of computing→ Paths and connectivity prob-

lems;

ACM Reference Format:

Chen Chen, Ruiyue Peng, Lei Ying, and Hanghang Tong. 2018. Network

Connectivity Optimization: Fundamental Limits and Effective Algorithms.

In KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, August 19–23, 2018, London, United Kingdom.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3220019

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220019

1 INTRODUCTION

Network connectivity optimization is an essential task behind a

myriad of high-impact data mining applications such as immu-

nization, critical infrastructure construction, social collaboration

mining, bioinformatics analysis, intelligent transportation system

design, etc. In some of these applications, a less connected network

might be preferred, which is termed as ‘network destruction’ in [19].

Specifically, it requires a network optimization algorithm to find

a set of ‘silver bullet’ nodes/edges in the network to minimize its

connectivity [19]. For example, in the immunization scenario, it

is essential to identify crucial entities and links in the contagion

network to effectively contain the spread of a disease. On the other

hand, network connectivity optimization techniques may help for-

tify the robustness of the network. In infrastructure networks (e.g.,

power grids and transportation systems), the full functioning of the

systems is strongly dependent on the connectivity of the underlying

networks. Hence, it is of key importance for the maintenance team

to identify critical facilities and transmission lines whose failure

would sabotage the connectivity of the entire network, so that pre-

caution and protection measures can be implemented proactively.

The main difficulty of the network connectivity optimization

problem lies in its high computational complexity. To be specific,

the fundamental limit for minimizing the network connectivity by

removing a set of nodes/edges is rooted in its combinatorial nature.

Given a budget k , the number of all possible node sets of size k is(n
k

)
, and the number of edge sets of size k is

(m
k

)
, where n andm

are the numbers of nodes and edges in the network. Such exponen-

tial complexity makes the brute-force algorithm computationally

expensive and intractable, even in medium-sized networks.

To tackle the exponential computation complexity, state-of-the-

art methods often resort to greedy algorithms. Taking network

connectivity minimization problem by node deletions as an exam-

ple, the greedy algorithm would iteratively delete the node with

the highest connectivity impact score until the budget is reached.

Specifically, the impact score of a node is defined as the marginal

decrease of the network connectivity due to its removal from the

intermediately optimized network in the previous iteration. Thanks

to the diminishing returns property of the network connectivity

optimization problem on a wide range of connectivity measures [7],

the greedy algorithm guarantees a (1 − 1/e) near-optimal approxi-

mation solution. A key step in such greedy algorithms is to estimate

the impact score for each candidate node/edge. Some straightfor-

ward methods often involve an eigen decomposition operation,

which would make the overall algorithm polynomial w.r.t. the input

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1167

network size, and thus do not scale to large networks with millions

of nodes/edges. To address this issue, matrix perturbation based

methods are often used to approximate the node/edge impact score

by viewing the deletion of a node/edge as a perturbation to the cur-

rent networks [9, 10]. Such approximation methods often exhibit

empirical superiority over alternative methods, while ensuring a

linear scalability.

Despite the empirical success of existing methods on some spe-

cific network connectivity optimization problems, two key chal-

lenges largely remain open. First, on the theoretic side, the hardness

of the general connectivity optimization problem is unvalidated

except for a few special instances (e.g., leading eigenvalue [10],

triangle capacity [25]). Moreover, although the greedy algorithm

guarantees a (1 − 1/e) near-optimal solution, it remains unknown

if such an approximation ratio is optimal over all the polynomial

algorithms. Second, on the algorithmic side, the dilemma of the op-

timization quality vs. computational efficiency trade-off has largely

remained. On one hand, although there exist tractable greedy algo-

rithms for some special connectivity measures, they do not scale to

large networks because of their super-linear complexity [25]. On

the other hand, although matrix perturbation methods offer a linear

time complexity, their optimization quality is largely dependent on

the spectrum of the underlying network (e.g., the optimization qual-

ity would deteriorate quickly in small eigen-gap networks [8, 20]).

In this paper, we systematically address the above two challenges

for the network connectivity optimization problem. The main con-

tributions of the paper can be summarized as follows.

• Revealing the Fundamental Limits. We prove that for a wide

range of connectivity optimization problems, (1) they are NP-

hard and (2) (1− 1/e) is the best approximation ratio for any

polynomial algorithms, unless NP ⊆ DTIME(nO (log logn))1.
• Developing New Algorithms. We propose an effective algo-

rithm (CONTAIN) for network connectivity optimization.

The centerpieces of the proposed method include (a) an ef-

fective impact score approximation method and (b) an effi-

cient eigen-pair update method. The proposed CONTAIN

algorithm bears three distinct advantages over the existing

methods, including (1) effectiveness, being able to handle

small eigen-gap networks, consistently outperforming the

state-of-the-art methods over a diverse set of real networks;

(2) scalability, with a linear complexity w.r.t. the network

size; and (3) generality, applicable to a variety of different

network connectivity measures (e.g., leading eigenvalue, tri-

angle capacity and natural connectivity) as well as network

operations (node vs. edge deletion).

2 PROBLEM DEFINITION

In this section, we formally introduce the network connectivity

optimization problem and review the general strategy of greedy

algorithms.

Table 1 gives the main symbols used throughout the paper. Fol-

lowing the convention, we use bold upper-case for matrices (e.g.

A), bold lower-case for vectors (e.g. a) and calligraphic for sets (e.g.

A). We use ˜ to denote the notations after node/edge deletion, and

1DT IME(t (n)): the collection of languages that are decidable byO (t (n)) time deter-
ministic Turing machine[31].

Δ to denote the perturbations (e.g. ΔA = Ã − A). C(G) represents
the network connectivity measure to be optimized inG; o indicates
an element (a node/edge) in network G; I (o) denotes the impact

score of element o on C(G) ; Λ and U denote the eigenvalue matrix

and eigenvector matrix for the adjacency matrix A of the network.

Table 1: Main Symbols.

Symbol Definition and Description

G(V ,E) an undirected network

A,B the adjacency matrices (bold upper case)

a, b column vectors (bold lower case)

A,B sets (calligraphic)

A(i, j) the element at the ith row and the jth column in A

a(i) the ith element of vector a

A′ transpose of matrix A

ΔA perturbation of A

Ã the adjacency matrix after node/edge deletion on A

m,n number of edges and nodes in network G
C(G) connectivity measure of network G

F (Λ(r)) associated eigen-function for C(G)
o a network element in G (a node/edge)

I (o) connectivity impact score of o on C(G)
λ, u the leading eigenvalue and eigenvector of A (in magnitude)

Λ,U the eigenvalue and eigenvector matrix of A

Λ(r),U(r) the top-r eigen-pairs of A (in magnitude)

k the budget

2.1 Network Connectivity Measures

Many network connectivity measures can be defined as

C(G) =
∑
π ∈G

f (π) (1)

where π is a subgraph of G, f is a non-negative function that

maps any subgraph in G to a non-negative real number (i.e. f :

π → R+) [7]. Specifically, we have f (ϕ) = 0 for empty set ϕ; when
f (π) > 0, we call subgraph π as a valid subgraph. In other words, the

network connectivityC(G) can be viewed as aweighted aggregation
of the connectivities of all valid subgraphs in the network.

By choosing an appropriate f () function (please refer to [7]

for details), Eq. (1) includes several prevalent network connectiv-

ity measures, e.g., path capacity (which is in close relation to the

epidemic threshold), triangle capacity (which is rooted in social

balance theory) and natural connectivity (which is closely related

to network robustness). In terms of computation, it is often much

more efficient to either approximate or compute these connectivity

measures by the associated eigen-function F (Λ(r)), where Λ(r) rep-
resents the top-r eigenvalues of A. For example, the path capacity

converges to the leading eigenvalue of the adjacency matrix of the

network [4], the triangle capacity can be approximated by the sum

of cubes of the eigenvalues [33], and the natural connectivity is

calculated by the sum of exponentials of the eigenvalues [16].

2.2 Network Connectivity Optimization

With the network connectivity measure in Eq. (1), we formally

define network connectivity optimization problem as follows.

Problem 1. NetworkConnectivityOptimization (NETCOP)
Given: (1) a networkG ; (2) a connectivity mapping function f : π →
R
+ which defines C(G); (3) a type of network operation (node dele-

tion vs. edge deletion) and (4) an integer budget k with 1 < k <

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1168

min {|Sπ |,K} where Sπ = {π | f (π) > 0} denotes the set of valid
subgraphs and K denotes the number of valid network elements.

Output: a set of network elements X of size k , whose removal fromG
would minimize connectivity C(G).

It is worth noting that depending on the definition of C(G), the
valid subgraphs in Sπ may have various structures. In the triangle

minimization scenario, Sπ contains all the triangles in the network.

When the valid subgraph shares the same form as the operation

type (i.e. a valid subgraph is a single node in node-level operation

scenario, or a valid subgraph is an edge in edge-level operation

scenario), we call this kind of valid subgraphs as singletons. In Prob-

lem 1, we also require that the budget 1 < k < min {|Sπ |,K}. This
is a fairly generic constraint which can be easily met. For example,

for the node deletion operation, the set of valid network elements

is simply the entire node set of the input network (i.e., K = n); for a
connected network with its connectivity measure C(G) defined as

the path capacity, we have that |Sπ | > n. Therefore, the above con-
straint simply means that we cannot delete all the nodes from the

input network, which would make the problem trivial. On the other

end of the spectrum, we require that the budget k > 1. Otherwise

(with k = 1), the problem can be easily solved in polynomial time

(e.g., by choosing the valid network element with the largest impact

score). Problem 1 provides a general definition of the network con-

nectivity optimization problem, which can be in turn instantiated

into different instances, depending on (1) the specific choice of the

connectivity measure C(G) (or equivalently the choice of the f ()
function), and (2) the type of network operation (node deletion vs.

edge deletion). For example, in the robustness analysis of the power

grid, we might choose the natural connectivity as C(G) to evaluate

the robustness of the system, and we are interested in identifying

k most critical power transmission lines whose failure would cause

a cascading failure of the entire grid. To abstract it as a network

connectivity optimization problem, we have the input network set

as the topological structure of the power grid; the connectivity to

optimize as the natural connectivity; the operation type as edge

deletion; and the valid network elements as all the edges (i.e.,K =m
in this case).

2.3 Greedy Strategy for NETCOP

Due to the combinatorial nature of Problem 1, it is computation-

ally infeasible to solve it in a brute-force manner. Thanks to the

diminishing returns property of NETCOP, the greedy strategy has

become a prevalent choice for solving Problem 1 with a guaranteed

(1− 1/e) approximation ratio. For the ease of following discussions,

we present the outline of such greedy strategy in Algorithm 1. In

Algorithm 1, the solution set X is initialized with an empty set. At

each iteration (step 2 to step 8), the element (a node or an edge) with

the highest impact score is added to the solution set X until the

budget is reached. The returned solution set X in step 9 guarantees

a (1 − 1/e) approximation ratio. For more details and proofs, please

refer to [7].

3 FUNDAMENTAL LIMITS

In this section, we start with detailing the theoretic challenges of

the network connectivity optimization (NETCOP) problem, and

then reveal two fundamental limits, including its hardness and its

approximability.

Algorithm 1 A Generic Greedy Strategy for NETCOP [7]

Input: (1) A network G; (2) a connectivity mapping function f :

π → R+ which defines C(G); (3) a type of network operation

and (4) a positive integer k
Output: a set of network elements X of size k .
1: initialize X to be empty

2: for i = 1 to k do

3: for each valid network element o in G do

4: calculate I (o) ← C(G) −C(G \ {o})
5: end for

6: add the element õ = argmaxo I (o) to X
7: remove the element {õ} from network G
8: end for

9: return X

3.1 Theoretic Challenges of NETCOP

The first theoretic challenge of NETCOP lies in its hardness. Since

the NETCOP problem has various instances, intuitively, the hard-

ness of those instances might vary dramatically from one to another.

For example, if the elements in the valid subgraph set Sπ are all

singletons w.r.t. the corresponding operation type (i.e., Sπ is the

node set of the input network for the node-level optimization prob-

lem, or Sπ is the edge set for the edge-level optimization problem),

we can simply choose the top–k nodes/edges with the highest f (π)
scores, which immediately gives the optimal solution. However, if

NETCOP is instantiated as an edge minimization problem under

node deletion operations (i.e. the valid subgraph Sπ consists of all

the edges, the valid network element set is the entire node set) , the

problem would become the (weighted) max-k vertex cover problem,

which is known to be NP-hard. Such observations naturally give

rise to the following question, what is the key intrinsic property of

valid subgraph set Sπ in conjunction with the network operation type

that determines whether or not the corresponding NETCOP instance

is polynomially solvable? To date, the hardness of the general NET-

COP problem has largely remained unvalidated, except for a few

special instances (see Section 6 for details). The second theoretic

challenge of NETCOP lies in its approximability. The greedy algo-

rithm outlined in Section 2 has a provable (1 − 1/e) approximation

ratio [7]. However, we still do not know if such an approximation

ratio is optimal. In other words, it remains unknown if there exists

any polynomial algorithm with an approximation ratio better than

(1 − 1/e) for NETCOP.
3.2 Fundamental Limit #1: NP-Hardness

We reveal the hardness result of the NETCOP problem in Theorem 1.

It states that the NETCOP problem defined in Problem 1 are in

general NP-hard, unless the valid subgraphs in set Sπ are mutually

independent to each other2.

Theorem 1. NP-Harness of NETCOP. The NETCOP problem

with non-independent valid subgraphs in Problem 1 is NP-hard.

Proof. See Appendix. �

2Two valid subgraphs are independent to each other if they do not have common valid
network element.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1169

3.3 Fundamental Limit #2: Approximability

Based on the hardness result of NETCOP, we further reveal the

approximability of NETCOP in Theorem 2, which says that (1−1/e)
is indeed the best approximation ratio a polynomial algorithm can

achieve unless NP ⊆ DTIME(nO (log logn)).
Theorem 2. Approximability of NETCOP. (1 − 1/e) is the

best approximation ratio for the NETCOP problem in polynomial

time, unless NP ⊆ DTIME(nO (log logn)).
Proof. We prove this by contradiction. In the proof of Theo-

rem 1 (see Appendix), we show that max k-hitting set problem is

polynomially reducible to the NETCOP problem, which implies

that if there is an α-approximation algorithm that can solve NET-

COP in polynomial time with α > (1 − 1/e), there will be an α-
approximation algorithm for max k-hitting set as well. However,

it has been proved in [17] that the unit cost maximum k-coverage
problem (an equivalent problem to max k-hitting set problem) can

not be approximated with a factor better than (1 − 1/e) unless
NP ⊆ DTIME(nO (log logn)), which contradicts with our assump-

tion. Hence, we conclude that there is no polynomial algorithm for

the NETCOP problem with an approximation ratio greater than

(1 − 1/e), unless NP ⊆ DTIME(nO (log logn)). �

Since the greedy strategy in Algorithm 1 guarantees a (1 − 1/e)
approximation ratio, Theorem 2 implies that the greedy algorithm

is the best polynomial algorithm for NETCOP in terms of its ap-

proximation ratio unless NP ⊆ DTIME(nO (log logn)).
4 ALGORITHM AND ANALYSIS

In this section, we start with detailing the algorithmic challenges

of the network connectivity optimization (NETCOP) problem, and

then present an effective algorithm, followed by some analysis in

terms of its effectiveness and efficiency.

4.1 Algorithmic Challenges of NETCOP

In the greedy strategy (Algorithm 1), a key step is to calculate the

impact score of each network element, i.e., I (o) = C(G) −C(G \ {o})
(Step 4). As we have mentioned in Section 2, the network connec-

tivity measuresC(G) studied in this paper can be calculated or well

approximated by a function of top-r eigenvalues of its adjacency

matrix (i.e. C(G) = F (Λ(r)), where F () is the function of eigenval-

ues). Therefore, the core step of calculating I (o) is to compute Λ(r)
on G \ {o}, which takes O(m) time (say using the classic Lanczos

method). Consequently, simply recomputing C(G \ {o}) for each
network element from scratch would make the entire algorithm

O(mn) for node-level optimization problems and O(m2) for edge-
level optimization problems, neither of which is computationally

feasible in large networks. To address this issue, existing literature

often resorts to matrix perturbation theory. Its key idea is to view

the deletion of a network element o as a perturbation to the original

network (i.e. Ã = A + ΔA). Thus, the new eigenvalues (and hence

the new connectivity measure C(G \ {o})) can be approximated

from the eigenvalues and eigenvectors of the original network in

constant time, making the overall algorithm linear w.r.t. the size

of the input network [9, 10]. However, for networks with small

eigen-gaps, the approximation accuracy of matrix perturbation the-

ory based methods might deteriorate quickly, if not collapse at all.

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

(a) Random Perturbation (b) Node Deletion (c) Edge Deletion

Figure 1: Illustrations and comparison of random perturba-

tion matrix (a), which is dense and potentially full-rank, vs.

perturbationmatrices by node deletion (b) and edge deletion

(c), both of which are sparse and low-rank.

This issue might persist even if we switch to computationally more

expensive high-order matrix perturbation theory [9, 10] . Thus, the

main algorithmic challenge is how to accurately approximate the

top-r eigenvalues of the input network after a node/edge deletion.

4.2 CONTAIN: The Proposed Algorithm

Wepropose a new updating algorithm for the top-r eigenvalues after

node/edge deletion. In order to maintain the linear complexity of

the entire greedy algorithm, we seek to update the top-r eigenvalues

in constant time for each node/edge deletion operation.

Our key observation is as follows. In classic matrix perturba-

tion theory (whether the first-order matrix perturbation theory

or its high-order variants), a fundamental assumption is that the

perturbation matrix ΔA is a random matrix whose spectrum is well-

bounded as illustrated in Figure 1(a). However, such assumption

does not hold in the node/edge deletion scenario (Figure 1(b) and

(c)), in which the perturbation matrix ΔA is sparse and low-rank.

Armed with this observation, we propose an effective eigen-pair

update algorithm for node/edge deletion based on partial-QR de-

composition. Unlike matrix perturbation based methods, which

would inevitably introduce approximation error in the procedure,

the proposed algorithm does not introduce any additional error

when computing the impact score I (o), and it runs in constant time

for each node/edge operation.

The proposed CONTAIN algorithm is presented in Algorithm 2.

Overall, it follows the greedy strategy (Algorithm 1). In detail, We

first compute the top-r eigen-pairs of the network and compute

the connectivity score of the original network (step 2-3). From

step 4 to step 19, we iteratively select the element with the highest

impact score. When evaluating the impact of each valid element, we

first construct the perturbation matrix ΔA for the corresponding

element and then perform eigen decomposition on it (step 6-7).

Particularly, for node deletion operation, suppose the removed node

v has a set of neighbor nodes Nv . Then the resulting perturbation

matrix ΔA has ΔA(v,Nv) = ΔA(Nv ,v) = −1, which is a rank-2

sparse matrix. Therefore,UΔ and ΛΔ can be directly expressed as an

n×2 matrix and a 2×2 matrix respectively. Moreover, let nv = |Nv |,
the non-zero entries in the eigenvector matrix of ΔA are

UΔ(v, 1) = 1√
2
, UΔ(v, 2) = 1√

2

UΔ(Nv , 1) = − 1√
2nv
, UΔ(Nv , 2) = 1√

2nv
(2)

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1170

Algorithm 2 The CONTAIN Algorithm

Input: (1) The adjacency matrix of the network A; (2) the associ-

ated eigen-function F () for connectivityC(G); (3) rank r ; (4) the
network operation (node vs. edge deletion); and (5) a positive

integer k .
Output: a set of network elements X of size k .
1: initialize X to be empty

2: compute [U(r),Λ(r)] ←top-r eigen-pairs of matrix A

3: compute C(G) ← F (Λ(r))
4: for i = 1 to k do

5: for each valid element o in G do

6: ΔA ← the perturbation matrix by element o’s deletion
7: [UΔ,ΛΔ] ←eigen-pairs of ΔA

8: R ←upper triangular matrix from [U(r),UΔ]’s partial-QR
decomposition

9: Λz ← eigenvalues of Z = R[Λ(r), 0; 0,ΛΔ]R′
10: compute I (o) ← C(G) − F (Λz)
11: end for

12: add õ = argmaxo I (o) to X
13: update C(G) ← C(G) − I (õ) and set I (õ) ← −1
14: ΔA ← the perturbation matrix by element õ’s deletion
15: [UΔ,ΛΔ] ← eigen-pairs of ΔA

16: [Q,R] ← partial-QR decomposition of [U(r),UΔ]
17: [Uz ,Λz] ← eigen-pairs of Z = R[Λ(r), 0; 0,ΛΔ]R′

18: update U(r) ← (QUz)(r), Λ(r) ← Λ
(r)
z , A ← A + ΔA

19: end for

20: return X

and the eigenvalue matrix of ΔA is

ΛΔ =

[√
nv 0

0 −√nv
]

(3)

In the edge deletion scenario, the perturbation matrix ΔA corre-

sponding to the removal of edge 〈u,v〉 has only two non-zero

entries ΔA(u,v) = ΔA(v,u) = −1 and u � v , which is also a rank-2

matrix. Then, the only non-zero entries in UΔ are

UΔ(u, 1) = 1√
2
, UΔ(u, 2) = 1√

2

UΔ(v, 1) = − 1√
2
, UΔ(v, 2) = 1√

2
(4)

And the eigenvalue matrix ΛΔ is

ΛΔ =

[
1 0

0 −1
]

(5)

With the eigenvector matrix of ΔA, we proceed to perform partial-

QR decomposition on [U(r),UΔ] in step 8. As U(r) is already or-

thonormal, theQmatrix in the decomposition can be written as the

concatenation of U(r) and two orthogonal vectors in unit length as

follows

Q = [U(r), q1

‖q1‖ ,
q2

‖q2‖] (6)

By the Gram-Schmidt process, we have

q1 = UΔ(:, 1) − U(r)r1

q2 = UΔ(:, 2) − U(r)r2 + r′1r2
q1

‖q1‖2 (7)

where r1 = U(r) ′UΔ(:, 1) and r2 = U(r) ′UΔ(:, 2).
For node-level operations, we have

r1 = U(r) ′UΔ(:, 1) = 1√
2
(U(r)(v, :) − 1√

nv

∑
u ∈Nv

U(r)(u, :))′

r2 = U(r) ′UΔ(:, 2) = 1√
2
(U(r)(v, :) + 1√

nv

∑
u ∈Nv

U(r)(u, :))′ (8)

While for edge-level operations, we have

r1 = U(r) ′UΔ(:, 1) = 1√
2
(U(r)(u, :) − U(r)(v, :))′

r2 = U(r) ′UΔ(:, 2) = 1√
2
(U(r)(u, :) + U(r)(v, :))′ (9)

Correspondingly, the upper-triangular matrix R can be written as

R =

⎡⎢⎢⎢⎢⎢⎣
I r1 r2

0 ‖q1‖ − r′1r2
‖q1 ‖

0 0 ‖q2‖

⎤⎥⎥⎥⎥⎥⎦
(10)

By the definition of q1, q2 in Eq. (7) together with the orthonor-

mal property of the eigenvectors, the norms of q1 and q2 can be

computed indirectly with two r × 1 vectors r1 and r2 as

‖q1‖ =
√
1 − ‖r1‖2

‖q2‖ =
√
1 − ‖r2‖2 −

(r′1r2)2
1 − ‖r1‖2 (11)

This enables us to compute ‖q1‖ and ‖q2‖ without explicitly con-

structing q1 and q2, which reduces the cost of step 8 from O(nr)
to O(r). It can be proved that by setting Z = R[Λ(r), 0; 0,ΛΔ]R′,
the eigenvalues of Z are just the top eigenvalues of the perturbed

matrix A + ΔA, and the top eigenvectors of A + ΔA can be calcu-

lated by QUz (step 18). Therefore, we only need Λz to compute

the impact score of element o (step 10). After scanning all the valid

elements in the current network, we choose the one with the largest

impact score and add it to the element set X (step 12-13). Then, we

update the network and its eigen-pairs (step 14-18). The procedure

to update eign-pairs is similar to that of computing the impact score

for a given network element (step 6-9), with the following subtle

difference. In order to just compute the impact score of a given

network element, we only need the updated eigenvalues. This is

crucial as it saves the computation of (1) constructing q1 and q2, (2)

finding the eigenvectors of Z, and (3) updating the eigenvectors of

perturbed matrix A + ΔA, which in turn helps maintain constant

time complexity for each inner for-loop (step 5-11).

4.3 Proof and Analysis

In this subsection, we analyze the proposed CONTAIN algorithm

w.r.t. its effectiveness and efficiency.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1171

4.3.1 Effectiveness. The effectiveness of CONTAIN is summa-

rized in Lemma 3, which says that the computation of the impact

score for each valid network element in the inner for-loop does not

introduce any extra approximation error.
Lemma 3. Effectiveness of CONTAIN. Suppose A is approxi-

mated with its top-r eigen-pairs with error E (i.e.A = U(r)Λ(r)U(r) ′+
E), then the Λz and QUz returned in Algorithm 2 can be used to

approximate Ã as its top eigen-pairs with no extra error.

Proof. As A = U(r)Λ(r)U(r) ′ + E and ΔA = UΔΛΔU
′
Δ, then Ã

can be expressed as

Ã = U(r)Λ(r)U(r) ′ + UΔΛΔU
′
Δ + E

= [U(r),UΔ]
[
Λ(r) 0

0 ΛΔ

]
[U(r),UΔ]′ + E (12)

Perform partial-QR decomposition on [U(r),UΔ] as [U(r),UΔ] =
QR, we get orthonormal basis for Ã and an upper triangular matrix

R. Then the perturbed matrix Ã can be rewritten as

Ã = QR

[
Λ(r) 0

0 ΛΔ

]
R′Q′ + E (13)

Let Z = R[Λ(r), 0; 0,ΛΔ]R′ and perform eigen decomposition on Z

as Z = UzΛzU
′
z , Ã is now equivalent to

Ã = QUzΛzU
′
zQ

′ + E = (QUz)Λz (QUz)′ + E (14)

Since both Q and Uz are orthonormal, we have (QUz)(QUz)′ = I.

Thus, Λz and QUz can be viewed as the top eigen-pairs of Ã. As

the approximation error remains to be E in Eq. (14), it implies that

no extra error is introduced in the procedure, which completes the

proof. �

4.3.2 Efficiency. The complexity of the proposed CONTAIN

algorithm is summarized in Lemma 4, which says it is linear in both

time and space.
Lemma 4. Complexity of CONTAIN. The time complexity of

CONTAIN for node-level connectivity optimization isO(k(mr +nr3)).
The time complexity of CONTAIN for edge-level connectivity opti-

mization is O(k(mr3 + nr2)). The space complexity of CONTAIN is

O(nr +m).
Proof. In the CONTAIN algorithm, computing top-r eigen-pairs

and connectivity C(G) would takes O(nr2 +mr) and O(r) respec-
tively. To compute the impact score for each node/edge (step 5-11),

it takes O(dvr) (dv is the degree of node v) for node v , and O(r)
for each edge to get the upper triangular matrix R in step 8. Since

performing eigen-decomposition on Z at step 9 takes O(r3), the
complexity to collect impact scores for all the nodes/edges are

O(nr3 +mr) and O(mr3) respectively. Picking out the node/edge

with highest impact score in current iteration would cost O(n) for
node level operations and O(m) for edge level operations. At the
end of the iteration, updating the eigen-pairs of the network takes

the complexity of O(nr2 + r3). As we have r � n, the overall time

complexity to select k nodes would be O(k(mr + nr3)); and the

complexity to select k edges would be O(k(mr3 + nr2))
For space complexity, it takesO(n+m) to store the entire network,

O(nr) to calculate and store the top-r eigen-pair of the network,
O(n) to store the impact scores for all the nodes in node level

optimization scenarios and O(m) to store the impact scores for all

the edges, the eigen-pair update requires a space ofO(nr). Therefore,
the overall space complexity for CONTAIN is O(nr +m). �

5 EVALUATIONS

In this section, we evaluate the proposed CONTAIN algorithm. All

experiments are designed to answer the following two questions:

• Effectiveness. How effective is the proposed CONTAIN

algorithm in minimizing various connectivity measures?

• Efficiency. How efficient and scalable is the proposed CON-

TAIN algorithm?

5.1 Experiment Setup

5.1.1 Datasets. Weperform experiments on 10 different datasets

from 4 different domains, including Airport: an air traffic network

that represents the direct flight connections between internal US air-

ports3; Oregon: an autonomous system network which depicts the

information transferring relationship between routers from [21];

Chemical: a network based on [12] that shows the similarity be-

tween different chemicals; Disease: a network that depicts the

similarity between different diseases [12]; Gene: a protein-protein

interaction network based on [12]; Astrph: a collaboration network

between authors whose papers were submitted to Astro Physics

category onArxiv [22]; Hepth: a collaboration network between au-

thors whose papers were submitted to High Energy Physics (Theory

category) on Arxiv [21]; Aminer: a collaboration network between

researchers in the Aminer datasets [32]; Eucore: the email corre-

spondence network from a large European research institution [22];

and Fb: a social circle network collected from Facebook [26]. The

statistics of those datasets are listed in Table 2.

Table 2: Statistics of Datasets.

Domain Dataset #Nodes #Edges Avg Degree

Infrastructure
Airport 2,833 7,602 5.37

Oregon 5,296 10,097 3.81

Biology

Chemical 6,026 69,109 22.94

Disease 4,256 30,551 14.36

Gene 7,604 14,071 3.7

Collaboration

Astrph 18,772 198,050 21.1

Hepth 9,877 25,985 5.26

Aminer 1,211,749 4,756,194 7.85

Social
Eucore 1,005 16,064 31.97

Fb 4,039 88,234 43.69

5.1.2 Comparing Methods. We compare the proposed algorithm

with the following methods. (1) Degree: selecting top–k nodes

(edges) with the largest degrees; specifically, for edge 〈u,v〉, let
du and dv denote the degrees for its endpoints respectively, the

score for 〈u,v〉 is min{du ,dv }4. (2) PageRank: selecting top–k nodes
(edges) with the largest PageRank scores [29] (the corresponding

edge score is the minimum PageRank score among its two end-

points); (3) Eigenvector : selecting top–k nodes (edges) with the

largest eigenvector centrality scores [28] (the corresponding edge

score is the minimum eigenvector centrality score among its end-

points); (4) Netshield/Netmelt: selecting top–k nodes (edges) that

minimize the leading eigenvalue of the network [9, 10]; (5) MIOBI :

a greedy algorithm that employs first-order matrix perturbation

3http://www.levmuchnik.net/Content/Networks/NetworkData.html.
4We use min{du , dv } as edge score to ensure that both ends of the top ranked edges
are high degree nodes.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1172

method to estimate element impact score and update eigen-pairs [5];

(6) MIOBI-S: a variant of miobi that selects top–k nodes (edges)

in one batch without updating the eigen-pairs of the network; (7)

MIOBI-H : a variant of miobi that employs high order matrix per-

turbation method to update eigen-pairs [8]; (8) Exact: a greedy

algorithm that recomputes the top-r eigen-pairs to estimate the im-

pact score for each candidate node/edge. For the results reported in

this paper, we set rank r = 80 for all the top–r eigen-pairs based ap-
proximation methods (methods (5)-(8) and the proposed CONTAIN

method).

5.1.3 Evaluation Metrics. The performance of the algorithm is

evaluated by the impact of its selected elements I (X) = C(G) −
C(G \X). The larger the I (X) is, the more effective the algorithm is.

For a given dataset, connectivity measure and network operation,

we normalize I (X) by that of the best method, so that the results

across different datasets are comparable in the same plot.

5.1.4 Machine and Repeatability. All the experiments in the

paper are performed on a machine with 2 processors (Intel Xeon

3.5GHz) with 256GB of RAM. The algorithms are programmed with

MATLAB using a single thread. The code and the non-proprietary

datasets will be released after the paper is published.

5.2 Effectiveness

5.2.1 Effectiveness of CONTAIN. We compare the proposed al-

gorithm and the baseline methods on three connectivity measures

(leading eigenvalue, number of triangles, and natural connectiv-

ity) by both node-level operations and edge-level operations on all

datasets in our experiment. Since the Exact method needs to recom-

pute the top-r eigen-pairs for each candidate node/edge which is

very time-consuming, its results would be absent on some large

datasets (e.g., Aminier and Astrph) where it does not finish the

computation within 24 hours. In our experiment, the budget for

node-level operations is k = 20, the budget for edge-level opera-

tions is k = 200. The results are shown from Figure 2 to Figure 7.

We can see that the proposed CONTAIN (the rightmost bar) (1)

is very close to the Exact method (the black, hollow bar); and (2)

consistently outperforms all the other alternative methods. In the

meanwhile, the proposed CONTAIN algorithm is much faster than

Exact, as will shown in the next subsection.

5.2.2 Effect of Rank r . The main parameter that affects the per-

formance of CONTAIN is the rank r . To study the effect of r , we
change r from 5 to 80 to minimize the number of triangles on the

chemical dataset and compare them with the Exact method. The

results are shown in Figure 8. From Figure 8, it is obvious to see that

as r increases, the performance of CONTAIN increases accordingly,

which is consistent with our effectiveness analysis. With r = 80,

the performance of CONTAIN is very close to the Exact method

with different k .

5.3 Efficiency

5.3.1 Efficiency of CONTAIN. Figure 9 presents the quality vs.

running time trade-off of different methods for optimizing the nat-

ural connectivity (the most complicated connectivity measure) on

the chemical dataset. In both node-level and edge-level optimiza-

tion scenarios, the proposed CONTAIN achieves a very similar

performance as Exact. In terms of the running time, CONTAIN is

orders of magnitude faster than Exact. Although the running time of

other baseline methods is similar to CONTAIN, their performance

(y-axis) is not as good as CONTAIN.

5.3.2 Scalability of CONTAIN. The scalability results of CON-

TAIN are presented in Figure 10. As we can see, the proposed

CONTAIN algorithm scales linearly w.r.t. the size of the input net-

work (i.e. both the number of nodes and edges), which is consistent

with Lemma 4.

6 RELATEDWORK

In this section, we review the related literature from the follow-

ing two perspectives, including (a) connectivity measures and (b)

network connectivity optimization algorithms.

Connectivity Measures. At the macro-level, network connectiv-

ity can be viewed as a measure to evaluate how well the nodes are

connected together. Examples include the size of giant connected

component [3], graph diameter [1], the mixing time [14], the vul-

nerability measure [2], and the clustering coefficient [34]. At the

micro-view level, network connectivity measures the capacity of

edges, paths, loops, some complex motifs [27] or even the centrality

of the nodes. Examples include the epidemic threshold [4], the nat-

ural connectivity (i.e., the robustness) [16], degree centrality [13],

etc. Such connectivity measures have been extensively used for

propagation analysis [30], graph clustering [35, 36], etc.

Connectivity Optimization Algorithms. State-of-the-art algo-

rithms for network connectivity optimization are almost exclusively

designed for a specific connectivity measure and/or with a specific

network operation (node deletion vs. edge deletion). To name a few,

Chen et al. have proposed both node-level and edge-level manipu-

lation strategies to optimize leading eigenvalue and proved that the

corresponding node-level optimization problem is NP-hard in [10]

and [9], respectively. On the other hand, Le et al. have proposed an

algorithm to minimize the leading eigenvalue for networks with

small eigen-gaps in [20]. In [25], Li et al. show that both node-

level and edge-level triangle minimization problem is NP-hard and

have proposed several heuristic strategies for the triangle mini-

mization problem. In [5] and [6], Chan et al. study the optimization

problem for network robustness without analyzing its hardness.

In order to effectively and efficiently compute the impact scores

of network elements, the proposed CONTAIN algorithm resorts

to partial-QR decomposition, which has been successfully used in

several dynamic network mining tasks [11, 15, 23, 24].

7 CONCLUSIONS

In this paper, we study the network connectivity optimization

problem by addressing two open challenges. On the theoretic side,

we prove that a wide range of network connectivity optimization

(NETCOP) problems are NP-hard and (1 − 1/e) is the best approxi-
mation ratio that a polynomial algorithm can achieve for NETCOP

problems unless NP ⊆ DTIME(nO (log logn)). On the algorithmic as-

pect, we propose an effective, scalable and generalizable algorithm

CONTAIN. Extensive experimental evaluations on a variety of real

networks demonstrate that the proposed algorithm (1) consistently

outperforms alternative methods, and (2) scales linearly w.r.t. the

network size.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1173

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netshield/Netmelt MIOBI MIOBI-S MIOBI-H Exact CONTAIN

Figure 2: The optimization results on leading eigenvalue with node-level operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb
Figure 3: The optimization results on the number of triangles with node-level operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb
Figure 4: The optimization results on natural connectivity with node-level operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb
Figure 5: The optimization results on leading eigenvalue with edge-level operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb
Figure 6: The optimization results on the number of triangles with edge-level operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb
Figure 7: The optimization results on natural connectivity with edge-level operations.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1174

0 10 20 30 40 50
1000

1500

2000

2500

3000

3500

4000

k node (budget)

Im
pa

ct
 T

ria
ng

le

r = 5
r = 10
r = 20
r = 50
r = 80
Exact

0 100 200 300 400 500
1000

1500

2000

2500

3000

3500

4000

k edge (budget)
Im

pa
ct

 T
ria

ng
le

r = 5
r = 10
r = 20
r = 50
r = 80
Exact

(a) Node operations. (b) Edge operations.
Figure 8: The effect of r on optimizing the number of trian-

gles on chemical dataset.

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

Running Time (s)

Im
pa

ct
 N

C

Chemical-Node

Degree
PageRank
Eigenvector
Netshield
MIOBI
MIOBI-S
MIOBI-H
Exact
CONTAIN

0 0.5 1 1.5 2 2.5 3
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

Running Time (s)

Im
pa

ct
 N

C

Chemical-Edge

Degree
PageRank
Eigenvector
Netmelt
MIOBI
MIOBI-S
MIOBI-H
Exact
CONTAIN

(a) Node operations (b) Edge operations

Figure 9: The quality vs. running time trade-off on chemi-

cal. The budget for node operations is k = 20, the budget for

edge operations is k = 200.

0 0.5 1 1.5 2 2.5
x 105

0

5

10

15

20

25

30

35

40

Network Size (n+m)

R
un

ni
ng

 T
im

e
(s

)

Node-NC

r = 5
r = 10
r = 20
r = 50
r = 80

0 0.5 1 1.5 2 2.5
x 105

0

50

100

150

200

250

300

350

400

Network Size (n+m)

R
un

ni
ng

 T
im

e
(s

)

Edge-NC

r = 5
r = 10
r = 20
r = 50
r = 80

(a) Node operations (b) Edge operations

Figure 10: The scalability of CONTAIN. The budget for both

node and edge operations is k = 20.

ACKNOWLEDGMENTS

This material is supported by the National Science Foundation un-

der Grant No. IIS-1651203, IIS-1715385, IIS-1743040, ECCS-1547294,

and CNS-1629888, by DTRA under the grant number HDTRA1-16-

0017, by Army Research Office under the contract numberW911NF-

16-1-0168, by the U.S. Department of Homeland Security under

Grant Award Number 2017-ST-061-QA0001, and by additional gifts

from Huawei and Baidu.

The content of the information in this document does not nec-

essarily reflect the position or the policy of the Government, and

no official endorsement should be inferred. The U.S. Government

is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

REFERENCES
[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 1999. Internet: Diame-

ter of the world-wide web. nature 401, 6749 (1999), 130.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack
tolerance of complex networks. nature 406, 6794 (2000), 378–382.

[3] Béla Bollobás. 2001. The Evolution of Random Graphs–the Giant Component (2
ed.). Cambridge University Press, 130–159.

[4] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec, and Christos
Faloutsos. 2008. Epidemic thresholds in real networks. ACM Transactions on
Information and System Security (TISSEC) 10, 4 (2008), 1.

[5] Hau Chan, Leman Akoglu, and Hanghang Tong. 2014. Make it or break it:
Manipulating robustness in large networks. In Proceedings of the 2014 SIAM
International Conference on Data Mining. SIAM, 325–333.

[6] Hau Chan, Shuchu Han, and Leman Akoglu. 2015. Where graph topology mat-
ters: the robust subgraph problem. In Proceedings of the 2015 SIAM International
Conference on Data Mining. SIAM, 10–18.

[7] Chen Chen, Jingrui He, Nadya Bliss, and Hanghang Tong. 2015. On the Con-
nectivity of Multi-layered Networks: Models, Measures and Optimal Control. In
Data Mining (ICDM), 2015 IEEE International Conference on. IEEE, 715–720.

[8] Chen Chen and Hanghang Tong. 2017. On the eigen-functions of dynamic graphs:
Fast tracking and attribution algorithms. Statistical Analysis and Data Mining:
The ASA Data Science Journal 10, 2 (2017), 121–135.

[9] Chen Chen, Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Falout-
sos, and Christos Faloutsos. 2016. Eigen-Optimization on Large Graphs by Edge
Manipulation. ACM TKDD 10, 4, Article 49 (2016), 30 pages.

[10] Chen Chen, Hanghang Tong, B Aditya Prakash, Charalampos E Tsourakakis, Tina
Eliassi-Rad, Christos Faloutsos, and Duen Horng Chau. 2016. Node Immunization
on Large Graphs: Theory and Algorithms. IEEE Transactions on Knowledge and
Data Engineering 28, 1 (2016), 113–126.

[11] Xilun Chen and K Selcuk Candan. 2014. LWI-SVD: low-rank, windowed, incre-
mental singular value decompositions on time-evolving data sets. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 987–996.

[12] Allan Peter Davis, Cynthia J Grondin, Kelley Lennon-Hopkins, Cynthia Saraceni-
Richards, Daniela Sciaky, Benjamin L King, Thomas C Wiegers, and Carolyn J
Mattingly. 2015. The Comparative Toxicogenomics Database’s 10th year anniver-
sary: update 2015. Nucleic acids research 43, D1 (2015), D914–D920.

[13] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.
Social networks 1, 3 (1978), 215–239.

[14] Mark Jerrum and Alistair Sinclair. 1988. Conductance and the rapid mixing prop-
erty for Markov chains: the approximation of permanent resolved. In Proceedings
of the twentieth annual ACM symposium on Theory of computing. ACM, 235–244.

[15] Ling Jian, Jundong Li, and Huan Liu. 2018. Toward online node classification on
streaming networks. Data Min. Knowl. Discov. 32, 1 (2018), 231–257.

[16] WU Jun, Mauricio Barahona, Tan Yue-Jin, and Deng Hong-Zhong. 2010. Natural
connectivity of complex networks. Chinese physics letters 27, 7 (2010), 078902.

[17] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted maximum
coverage problem. Inform. Process. Lett. 70, 1 (1999), 39–45.

[18] Jon Kleinberg and Eva Tardos. 2006. Algorithm design. Pearson Education India.
[19] Istvan A Kovacs and Albert-Laszlo Barabasi. 2015. Network science: Destruction

perfected. Nature 524, 7563 (2015), 38–39.
[20] Long T Le, Tina Eliassi-Rad, and Hanghang Tong. 2015. MET: A fast algorithm

for minimizing propagation in large graphs with small eigen-gaps. In Proceedings
of the 2015 SIAM International Conference on Data Mining. SIAM, 694–702.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 177–187.

[22] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM TKDD 1, 1 (2007), 2.

[23] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed Network Embedding for Learning in a Dynamic Environment. In
Proceedings of CIKM 2017. ACM, 387–396.

[24] Liangyue Li, Hanghang Tong, Yanghua Xiao, and Wei Fan. 2015. Cheetah: fast
graph kernel tracking on dynamic graphs. In Proceedings of the 2015 SIAM Inter-
national Conference on Data Mining. SIAM, 280–288.

[25] Rong-Hua Li and Jeffrey Xu Yu. 2015. Triangle minimization in large networks.
Knowledge and Information Systems 45, 3 (2015), 617–643.

[26] Julian Mcauley and Jure Leskovec. 2014. Discovering social circles in ego net-
works. ACM TKDD 8, 1 (2014), 4.

[27] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824–827.

[28] Mark EJ Newman. 2008. The mathematics of networks. The new palgrave
encyclopedia of economics 2 (2008), 1–12.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report.

[30] B Aditya Prakash, Deepayan Chakrabarti, Nicholas C Valler, Michalis Faloutsos,
and Christos Faloutsos. 2012. Threshold conditions for arbitrary cascade models
on arbitrary networks. Knowledge and information systems 33, 3 (2012), 549–575.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1175

[31] Michael Sipser. 1997. Introduction to the theory of computation. PWS Publishing
Company.

[32] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 990–998.

[33] Charalampos E Tsourakakis. 2008. Fast counting of triangles in large real net-
works without counting: Algorithms and laws. In 2008 Eighth IEEE International
Conference on Data Mining. IEEE, 608–617.

[34] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

[35] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-
Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 555–564.

[36] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,
Hasan Davulcu, and Jingrui He. 2017. A Local Algorithm for Structure-Preserving
Graph Cut. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 655–664.

8 APPENDIX: PROOF OF THEOREM 1

Proof. As NETCOP problem admits two possible network op-

erations, including node deletions and edge deletions, we present

our proof for each scenario in the following two lemmas. Lemma 5

and Lemma 6 would prove that NETCOP problem is NP-hard. �

Lemma 5. The k-node connectivity minimization is NP-hard.

Proof. By Eq. (1), the connectivity of network G is defined as

C(G) = ∑
π ∈G f (π). We set function f as

f (π) =
{
1 if π is a valid subgraph

0 otherwise.
(15)

In other words,C(G) is measured by the number of valid subgraphs

in the network. Hence, we formulate the k-node minimization

problem as follows.

Problem 2. k-Node Minimization Problem: NodeMin(G,k)
Given: (1) A networkG ; (2) a set of non-independent valid subgraphs
Sπ and (3) a positive integer budget k with 1 < k < min {|Sπ |, |D|}
where D is the set of nodes in G that incident to valid subgraphs.

Output: A set with k nodes, whose removal from G would minimize

the number of valid subgraphs |Sπ |.
Here we prove that NodeMin(G,k) is NP-hard by constructing a

polynomial reduction from awell-knownNP-hard problem, themax

k-hitting set problem (MaxHit(n,m,k)) [18]. TheMaxHit(n,m,k)
problem is defined as follows.

Problem 3. Max k-Hitting Set Problem:MaxHit(n,m,k)
Given: (1) a setU ofn elements; (2) a collectionS = {B1,B2, . . . ,Bm }
ofm distinct subsets ofU, which are not mutually exclusive and (3)

a positive integer k .
Output: A setH ⊆ U with k elements, such that the cardinality of

{Bi |Bi ∩H � ϕ} is maximized.

We aim to prove thatMaxHit(n,m,k) is polynomially reducible

to NodeMin(G,k) (i.e. MaxHit(n,m,k) ≤p NodeMin(G,k)). With-

out loss of generality, we assume that 1 < k < min {n,m}. The ratio-
nality behind this assumption is that when k = 1,MaxHit(n,m, 1)
can be trivially solved by picking the element inU with the most

associated sets from S; when k ≥ m, we can hit allm sets with at

mostm elements fromU, which is guaranteed by the pigeonhole

principle; when k ≥ n, the entire element set U could be picked,

which returns a maximum possible solution for the given scenario.

Figure 11: An illustration of polynomial reduction fromMax

k Hitting Set problem.

Given an instance ofMaxHit(n,m,k) with 1 < k < min {n,m},
we can construct a network G with n nodes, each corresponds

to one element in U. For each subset Bi ⊆ U, we construct a

connected component Gi with |Bi | nodes in arbitrary shape as a

valid subgraph. The vertices in Gi are the nodes corresponding to

the elements in Bi . Thus, the removal of any vertex in Gi would

destroy the completeness of Gi . Consequently, the corresponding

subgraph would become invalid. Therefore, we can constructG as

the union ofm valid subgraphs asG = G1 ∪G2 . . . ∪Gm . Since the

sets in S are distinct and not mutually exclusive, the resulting valid

subgraph set Sπ is guaranteed to be non-independent. Therefore,

the solution ofMaxHit(n,m,k)would be equivalent to the solution
of NodeMin(G,k), which completes the proof. �

Figure 11 gives an illustration of the reduction from an instance

ofMaxHit(n,m,k) to NodeMin(G,k), in which valid subgraphs are

marked with different colors. Edge 〈5, 6〉 has two colors because it

participates in two different valid subgraphs.

Lemma 6. The k-edge connectivity minimization is NP-hard.

Proof. We also use the connectivity measure defined Eq. (15)

to complete the proof. The corresponding k-edge minimization

problem can be defined as follows.

Problem 4. k-Edge Minimization Problem (EdдeMin(G,k))
Given: (1) A networkG ; (2) a set of non-independent valid subgraphs
Sπ and (3) a positive integer budget k with 1 < k < min {|Sπ |, |D|}
whereD is the set of edges inG that were contained in valid subgraphs.

Output: A set with k edges, whose removal from G would minimize

the number of valid subgraphs |Sπ |.
We prove that EdдeMin(G,k) is NP-hard by constructing a poly-

nomial reduction from MaxHit(n,m,k) problem. Similar to the

rationale in the previous proof, we assume that 1 < k < min {n,m}.
Given an instance ofMaxHit(n,m,k), we construct an-edge star-

shaped networkG (i.e. all the n edges share one common endpoint).

Each edge corresponds to one element inU. Given a subset Bi , we

first locate the corresponding edges in G based on the elements in

Bi , and then mark the sub-star formed by those edges as a valid

subgraph Gi . Consequently, we havem valid subgraphs in G. The
removal of any edge from Gi would destroy the completeness of

the corresponding valid subgraph. Similarly, as the sets in S are

distinct and not pair-wise mutually exclusive, the resulting valid

subgraph set Sπ is guaranteed to be non-independent. Therefore,

the solution ofMaxHit(n,m,k)would be equivalent to the solution
of EdдeMin(G,k), which completes the proof. �

Figure 11 gives an illustration of the reduction from an instance

of MaxHit(n,m,k) to EdдeMin(G,k). Again, edges with multiple

colors indicate their participation in multiple valid subgraphs.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1176

